Jeremy Knight Math 639 3/11/11 Algorithm 10.1 Newton's Method for systems To approximate the solution of the nonlinear system LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYnLUkjbWlHRiQ2J1EiRkYnLyUlYm9sZEdRJXRydWVGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRjctSShtZmVuY2VkR0YkNiQtRiM2JC1GLDYlUSJ4RicvRjNGMS9GNlEnaXRhbGljRicvRjZRJ25vcm1hbEYnRkUtSSNtb0dGJDYtUSI9RidGRS8lJmZlbmNlR0Y0LyUqc2VwYXJhdG9yR0Y0LyUpc3RyZXRjaHlHRjQvJSpzeW1tZXRyaWNHRjQvJShsYXJnZW9wR0Y0LyUubW92YWJsZWxpbWl0c0dGNC8lJ2FjY2VudEdGNC8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRmVuLUkjbW5HRiQ2JlEiMEYnRi9GNUY4RkU= given an initial approximation x. Inputs: newton(f, n, x0, tol) where f is a vector of functions returning a vector of values, J is a matrix of functions which returns a matrix of values, n is the number of equations, x0 is the starting approximation, and tol is the desired tolerance. We will compute an approximation for the Jacobian matrix LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2J1EiSkYnLyUlYm9sZEdRJXRydWVGJy8lJ2l0YWxpY0dRJmZhbHNlRicvJSxtYXRodmFyaWFudEdRJWJvbGRGJy8lK2ZvbnR3ZWlnaHRHRjctSShtZmVuY2VkR0YkNiQtRiM2JC1GLDYlUSJ4RicvRjNGMS9GNlEnaXRhbGljRicvRjZRJ25vcm1hbEYnRkVGRQ== by LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUklbXN1YkdGJDYlLUkjbWlHRiQ2JVEiSkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1GIzYlLUYvNiVRI2lqRidGMkY1RjJGNS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnLUkobWZlbmNlZEdGJDYkLUYjNiQtRi82JVEieEYnRjJGNS9GNlEnbm9ybWFsRidGSC1JI21vR0YkNi1RIn5GJ0ZILyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0ZQLyUpc3RyZXRjaHlHRlAvJSpzeW1tZXRyaWNHRlAvJShsYXJnZW9wR0ZQLyUubW92YWJsZWxpbWl0c0dGUC8lJ2FjY2VudEdGUC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHRmluLUZLNi1RKSZhcHByb3g7RidGSEZORlFGU0ZVRldGWUZlbi9GaG5RLDAuMjc3Nzc3OGVtRicvRltvRmBvLUkmbWZyYWNHRiQ2KC1GQTYkLUYjNiotRiw2JS1GLzYlUSJGRidGMkY1LUYjNiUtRi82JVEiaUYnRjJGNUYyRjVGPS1GQTYkLUYjNihGRS1GSzYtUSIrRidGSEZORlFGU0ZVRldGWUZlbi9GaG5RLDAuMjIyMjIyMmVtRicvRltvRltxLUYvNiVRImhGJ0YyRjUtRks2LVEnJnNkb3Q7RidGSEZORlFGU0ZVRldGWUZlbkZnbkZqbi1GLDYlLUYvNiVRImVGJ0YyRjUtRiM2JS1GLzYlUSJqRidGMkY1RjJGNUY9RkhGSEZKLUZLNi1RKiZ1bWludXMwO0YnRkhGTkZRRlNGVUZXRllGZW5GanBGXHFGSkZpby1GQTYkLUYjNihGRS1GSzYtUSgmbWludXM7RidGSEZORlFGU0ZVRldGWUZlbkZqcEZccUZdcUZgcUZjcUZIRkhGSEZILUYjNictSSNtbkdGJDYkUSIyRidGSEZgcUZdcUYyRjUvJS5saW5ldGhpY2tuZXNzR1EiMUYnLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmJzLyUpYmV2ZWxsZWRHRlBGSA==.
<Text-field style="Heading 1" layout="Heading 1">newton(f,n,x0,tol,N)</Text-field> LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYjLUkjbWlHRiQ2I1EhRic= newton:=proc(n,f,x0,TOL,N) #f = vector of functions, n = number of equations and variables, #x0=initial approximation, tol=tolerance #f must be of the form >>f=(x::array)->function_definition #M= maximum number of iterations local e,h,F,J,i,j,k,x,y,InfNorm,gauss,temp: #option trace; #####Subroutine section##### ##InfNorm for finding norm for tolerance InfNorm:=proc(n,x) local inf_norm,j,p: inf_norm:=x[1]: for j from 2 to n do if abs(x[j])>inf_norm then inf_norm:=abs(x[j]): p:=j: end if: end do: return(inf_norm); end proc: ##gauss - for solving J(x)*y=-F(x) gauss:=proc(A, bb, n) local a,b,i, j, k, p, m, tmp, maxval, tmpval, s, x, nrow; x:=Array(1..n); #Copy A and bb to a and b to prevent original arrays from being modified a:=Array(1..n,1..n): b:=Array(1..n): for i from 1 to n do for j from 1 to n do a[i,j]:=A[i,j]: end do: b[i]:=bb[i]: end do: nrow:=Array(1..n); for i from 1 to n do nrow[i]:= i; end do; s:=Array(1..n); for i from 1 to n do maxval:=abs(a[i,1]); for j from 2 to n do tmpval:=abs(a[i,j]); if ( tmpval > maxval ) then maxval:=tmpval; end if; end do; s[i]:=maxval; end do; for i from 1 to n-1 do # find pivot row maxval:= abs(a[nrow[i],i])/s[nrow[i]]; p:=i; for j from i+1 to n do tmpval:= abs(a[nrow[j],i])/s[nrow[j]]; if (tmpval > maxval) then p:=j; maxval:=tmpval; end if; end do; if ( maxval = 0 ) then return(0); end if; # switch rows if ( p <> i ) then tmp:=nrow[p]; nrow[p]:=nrow[i]; nrow[i]:=tmp; end if; # zero out column i for k from i+1 to n do m:=a[nrow[k],i]/a[nrow[i],i]; a[nrow[k],i]:=0; for j from i+1 to n do a[nrow[k],j]:=a[nrow[k],j]-m*a[nrow[i],j]; end do; b[nrow[k]]:=b[nrow[k]]-m*b[nrow[i]]; end do; if ( a[nrow[n],n] = 0 ) then return(0); end if; end do; # backward substitution x[n]:= b[nrow[n]]/a[nrow[n],n]; for j from n-1 to 1 by -1 do x[j]:=b[nrow[j]]; for k from n to j+1 by -1 do x[j]:=x[j]- a[nrow[j],k]*x[k]; end do; x[j]:=x[j]/a[nrow[j],j]; end do; return(x); end: ##########end subroutine section########## #define x as the iterate values of the functions and #define J as the Jacobian matrix approximate, and #e = vector representing the jth column of the idenity matrix #h = step value for the Jacobian approximation x:=Array(1..n): for i from 1 to n do x[i]:=x0[i]: end do: J:=Array(1..n,1..n): F:=Array(1..n): e:=Array(1..n): h:=.001: k:=1: #####end definitions##### while k<=N do #calculate F(x)=x for i from 1 to n do F[i]:=f[i](x); end do; #calculate the Jacobian J(x) for i from 1 to n do for j from 1 to n do e[j]:=h: J[i,j]:=(f[i](x+e)-f[i](x-e))/(2*h): e[j]:=0: end do: end do: #Solve J(x)y=-F(x) y:=gauss(J,((-1)*F),n): x:=x+y: if InfNorm(n,y)<=TOL then print("solution=", x): print("iterations=",k): break: end if: print(k,x); k:=k+1 end do: if k>N then print("maximum number of iterations exceeded"): end if: end proc:
g1:=(x::Array) -> -cos(x[2]*x[3])-(1/2); f1:=(x::Array)->g1(x)+3.0*x[1]; f2:=(x::Array)->x[1]^2-81.0*(x[2]+0.1)^2+sin(x[3])+1.06; f3:=(x::Array)->evalf(exp(-1.0*x[1]*x[2])+20.0*x[3]+(10.0*Pi-3.0)/3.0); f:=Array([f1,f2,f3]); Zio2IydJInhHNiJJJkFycmF5RyUqcHJvdGVjdGVkR0YmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLCYtSSRjb3NHNiRGKEkoX3N5c2xpYkdGJjYjKiYmOSQ2IyIiIyIiIiZGNDYjIiIkRjchIiIjRjtGNkY3RiZGJkYm Zio2IydJInhHNiJJJkFycmF5RyUqcHJvdGVjdGVkR0YmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLCYtSSNnMUdGJjYjOSQiIiIqJiQiI0khIiJGMSZGMDYjRjFGMUYxRiZGJkYm Zio2IydJInhHNiJJJkFycmF5RyUqcHJvdGVjdGVkR0YmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLCoqJCY5JDYjIiIiIiIjRjEqJiQiJDUpISIiRjEqJCwmJkYvNiNGMkYxJEYxRjZGMUYyRjFGNi1JJHNpbkc2JEYoSShfc3lzbGliR0YmNiMmRi82IyIiJEYxJCIkMSIhIiNGMUYmRiZGJg== Zio2IydJInhHNiJJJkFycmF5RyUqcHJvdGVjdGVkR0YmNiRJKW9wZXJhdG9yR0YmSSZhcnJvd0dGJkYmLUkmZXZhbGZHRig2IywoLUkkZXhwRzYkRihJKF9zeXNsaWJHRiY2IywkKigkIiM1ISIiIiIiJjkkNiNGOkY6JkY8NiMiIiNGOkY5RjoqJiQiJCsjRjlGOiZGPDYjIiIkRjpGOiomLCYqJiQiJCsiRjlGOkkjUGlHRihGOkY6JCIjSUY5RjlGOkZNRjlGOkYmRiZGJg== LUkmQXJyYXlHJSpwcm90ZWN0ZWRHNiMvSSQlaWRHNiIiKmckXDdF x0:=Array([0.1,0.1,-0.1]); newton(3,f,x0,.0000001,20); LUkmQXJyYXlHJSpwcm90ZWN0ZWRHNiMvSSQlaWRHNiIiKks/RGgj NiQiIiItSSZBcnJheUclKnByb3RlY3RlZEc2Iy9JJCVpZEc2IiIqS2pNaCM= NiQiIiMtSSZBcnJheUclKnByb3RlY3RlZEc2Iy9JJCVpZEc2IiIqJSk+V2gj NiQiIiQtSSZBcnJheUclKnByb3RlY3RlZEc2Iy9JJCVpZEc2IiIqQzRhaCM= NiQiIiUtSSZBcnJheUclKnByb3RlY3RlZEc2Iy9JJCVpZEc2IiIqWz1raCM= NiRRKnNvbHV0aW9uPTYiLUkmQXJyYXlHJSpwcm90ZWN0ZWRHNiMvSSQlaWRHRiQiKiM+UTxF NiRRLGl0ZXJhdGlvbnM9NiIiIiY= x0:=Array([0.1,0.1,-0.1]); newton(3,f,x0,.0000001,20); LUkmQXJyYXlHJSpwcm90ZWN0ZWRHNiMvSSQlaWRHNiIiKmtka1wj NiQiIiItSSZBcnJheUclKnByb3RlY3RlZEc2Iy9JJCVpZEc2IiIqJVtEKVwj NiQiIiMtSSZBcnJheUclKnByb3RlY3RlZEc2Iy9JJCVpZEc2IiIqc2MlKlwj NiQiIiQtSSZBcnJheUclKnByb3RlY3RlZEc2Iy9JJCVpZEc2IiIqU00xXSM= NiQiIiUtSSZBcnJheUclKnByb3RlY3RlZEc2Iy9JJCVpZEc2IiIqZ2g9XSM= NiRRKnNvbHV0aW9uPTYiLUkmQXJyYXlHJSpwcm90ZWN0ZWRHNiMvSSQlaWRHRiQiKnchKUhdIw== NiRRLGl0ZXJhdGlvbnM9NiIiIiY=
<Text-field style="Heading 1" layout="Heading 1">newton2(n,f,Jac,x0,tol,N)</Text-field> JSFH JSFH JSFH newton2:=proc(n,f,Jac,x0,TOL,N) #f = vector of functions, n = number of equations and variables, #x0=initial approximation, tol=tolerance #f must be of the form >>f=(x::array)->function_definition #M= maximum number of iterations local e,h,F,J,i,j,k,x,y,InfNorm,gauss,temp: #option trace; #####Subroutine section##### ##InfNorm for finding norm for tolerance InfNorm:=proc(n,x) local inf_norm,j,p: inf_norm:=x[1]: for j from 2 to n do if abs(x[j])>inf_norm then inf_norm:=abs(x[j]): p:=j: end if: end do: return(inf_norm); end proc: ##gauss - for solving J(x)*y=-F(x) gauss:=proc(A, bb, n) local a,b,i, j, k, p, m, tmp, maxval, tmpval, s, x, nrow; x:=Array(1..n); #Copy A and bb to a and b to prevent original arrays from being modified a:=Array(1..n,1..n): b:=Array(1..n): for i from 1 to n do for j from 1 to n do a[i,j]:=A[i,j]: end do: b[i]:=bb[i]: end do: nrow:=Array(1..n); for i from 1 to n do nrow[i]:= i; end do; s:=Array(1..n); for i from 1 to n do maxval:=abs(a[i,1]); for j from 2 to n do tmpval:=abs(a[i,j]); if ( tmpval > maxval ) then maxval:=tmpval; end if; end do; s[i]:=maxval; end do; for i from 1 to n-1 do # find pivot row maxval:= abs(a[nrow[i],i])/s[nrow[i]]; p:=i; for j from i+1 to n do tmpval:= abs(a[nrow[j],i])/s[nrow[j]]; if (tmpval > maxval) then p:=j; maxval:=tmpval; end if; end do; if ( maxval = 0 ) then return(0); end if; # switch rows if ( p <> i ) then tmp:=nrow[p]; nrow[p]:=nrow[i]; nrow[i]:=tmp; end if; # zero out column i for k from i+1 to n do m:=a[nrow[k],i]/a[nrow[i],i]; a[nrow[k],i]:=0; for j from i+1 to n do a[nrow[k],j]:=a[nrow[k],j]-m*a[nrow[i],j]; end do; b[nrow[k]]:=b[nrow[k]]-m*b[nrow[i]]; end do; if ( a[nrow[n],n] = 0 ) then return(0); end if; end do; # backward substitution x[n]:= b[nrow[n]]/a[nrow[n],n]; for j from n-1 to 1 by -1 do x[j]:=b[nrow[j]]; for k from n to j+1 by -1 do x[j]:=x[j]- a[nrow[j],k]*x[k]; end do; x[j]:=x[j]/a[nrow[j],j]; end do; return(x); end: #####end subroutine section##### #define x as the iterate values of the functions and #define J as the Jacobian matrix approximate, and #e = vector representing the jth column of the idenity matrix #h = step value for the Jacobian approximation x:=Array(1..n): for i from 1 to n do x[i]:=x0[i]: end do: J:=Array(1..n,1..n): F:=Array(1..n): k:=1: #####end definitions##### while k<=N do #calculate F(x)=x for i from 1 to n do F[i]:=f[i](x); end do; #calculate the Jacobian J(x) for i from 1 to n do for j from 1 to n do J[i,j]:=Jac[i,j](x): end do: end do: #Solve J(x)y=-F(x) y:=gauss(J,((-1)*F),n): x:=x+y: if InfNorm(n,y)<=TOL then print("solution=", x): print("iterations=",k): break: end if: print(k,x); k:=k+1 end do: if k>N then print("maximum number of iterations exceeded"): end if: end proc:
<Text-field style="Heading 1" layout="Heading 1">Example from pg. 641</Text-field> f1:=(x::Array)->3*x[1]-cos(x[2]*x[3])-(1.0/2); f2:=(x::Array)->x[1]^2-81*(x[2]+0.1)^2+sin(x[3])+1.06; f3:=(x::Array)->evalf(exp(-x[1]*x[2])+20*x[3]+(10.0*(Pi)-3.0)/3.0); F:=Array([f1,f2,f3]); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjZjFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiUtRiM2JS1GLDYlUSJ4RidGL0YyLUY2Ni1RIzo6RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORlotRiw2JVEmQXJyYXlGJ0YvRjItRjY2LVEnJnJhcnI7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW4tRiM2Jy1GIzYlLUkjbW5HRiQ2JFEiM0YnRjktRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUklbXN1YkdGJDYlRlMtRiM2Iy1GYW82JFEiMUYnRjkvJS9zdWJzY3JpcHRzaGlmdEdRIjBGJy1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmZwLUYjNiUtRiw2JVEkY29zRicvRjBGPUY5LUY2Ni1RMCZBcHBseUZ1bmN0aW9uO0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUkobWZlbmNlZEdGJDYkLUYjNiMtRiM2JS1GaG82JUZTLUYjNiMtRmFvNiRRIjJGJ0Y5Rl9wRmRvLUZobzYlRlMtRiM2I0Zgb0ZfcEY5RmJwLUkmbWZyYWNHRiQ2KC1GIzYjLUZhbzYkUSQxLjBGJ0Y5RmpxLyUubGluZXRoaWNrbmVzc0dRIjFGJy8lK2Rlbm9tYWxpZ25HUSdjZW50ZXJGJy8lKW51bWFsaWduR0Zgcy8lKWJldmVsbGVkR0Y9 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjZjJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiUtRiM2JS1GLDYlUSJ4RidGL0YyLUY2Ni1RIzo6RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORlotRiw2JVEmQXJyYXlGJ0YvRjItRjY2LVEnJnJhcnI7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW4tRiM2KS1GIzYjLUkobXN1YnN1cEdGJDYnRlMtRiM2Iy1JI21uR0YkNiRRIjFGJ0Y5LUZmbzYkUSIyRidGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRicvJS9zdWJzY3JpcHRzaGlmdEdGXnAtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZlcC1GIzYlLUZmbzYkUSM4MUYnRjktRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUklbXN1cEdGJDYlLUkobWZlbmNlZEdGJDYkLUYjNiUtSSVtc3ViR0YkNiVGUy1GIzYjRmlvRl9wLUY2Ni1RIitGJ0Y5RjtGPkZARkJGREZGRkhGZHBGZnAtRmZvNiRRJDAuMUYnRjlGOUZpb0ZccEZcci1GIzYlLUYsNiVRJHNpbkYnL0YwRj1GOS1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGWUZlbi1GY3E2JC1GIzYjLUZocTYlRlMtRiM2Iy1GZm82JFEiM0YnRjlGX3BGOUZcci1GZm82JFElMS4wNkYnRjk= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjZjNGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiUtRiM2JS1GLDYlUSJ4RidGL0YyLUY2Ni1RIzo6RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORlotRiw2JVEmQXJyYXlGJ0YvRjItRjY2LVEnJnJhcnI7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW4tRiM2JS1GLDYlUSZldmFsZkYnRi9GMi1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGWUZlbi1JKG1mZW5jZWRHRiQ2JC1GIzYjLUYjNictSSVtc3VwR0YkNiUtRjY2LVEvJkV4cG9uZW50aWFsRTtGJ0Y5RjtGPkZARkJGREZGRkhGWS9GTlEsMC4xMTExMTExZW1GJy1GIzYkLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZpcC1GIzYlLUklbXN1YkdGJDYlRlMtRiM2Iy1JI21uR0YkNiRRIjFGJ0Y5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRictRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUZecTYlRlMtRiM2Iy1GY3E2JFEiMkYnRjlGZnEvJTFzdXBlcnNjcmlwdHNoaWZ0R0ZocS1GNjYtUSIrRidGOUY7Rj5GQEZCRkRGRkZIRmhwRmpwLUYjNiUtRmNxNiRRIzIwRidGOUZpcS1GXnE2JUZTLUYjNiMtRmNxNiRRIjNGJ0Y5RmZxRmVyLUkmbWZyYWNHRiQ2KC1GIzYjLUYjNiUtRiM2JS1GY3E2JFElMTAuMEYnRjlGaXEtRiw2JVElJnBpO0YnL0YwRj1GOS1GNjYtUSgmbWludXM7RidGOUY7Rj5GQEZCRkRGRkZIRmhwRmpwLUZjcTYkUSQzLjBGJ0Y5LUYjNiNGZ3QvJS5saW5ldGhpY2tuZXNzR1EiMUYnLyUrZGVub21hbGlnbkdRJ2NlbnRlckYnLyUpbnVtYWxpZ25HRmF1LyUpYmV2ZWxsZWRHRj1GOQ== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiRkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtYWN0aW9uR0YkNiUtSShtZmVuY2VkR0YkNigtSSdtdGFibGVHRiQ2NS1JJG10ckdGJDYoLUkkbXRkR0YkNigtRiw2JVEjZjFGJ0YvRjIvJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRl1vLyUrZ3JvdXBhbGlnbkdGXW8vJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGZG8tRmZuNigtRiw2JVEjZjJGJ0YvRjJGW29GXm9GYG9GYm9GZW8tRmZuNigtRiw2JVEjZjNGJ0YvRjJGW29GXm9GYG9GYm9GZW9GW29GXm9GYG8vJSZhbGlnbkdRJWF4aXNGJy9GXG9RKWJhc2VsaW5lRicvRl9vUSdjZW50ZXJGJy9GYW9RJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0YxLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGXnEvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGaXEvJSZmcmFtZUdGaXEvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y9LyUtZXF1YWxjb2x1bW5zR0Y9LyUtZGlzcGxheXN0eWxlR0Y9LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRmZxRjkvSSttc2VtYW50aWNzR0YkUSdWZWN0b3JGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zccy8lK2FjdGlvbnR5cGVHUS5ydGFibGVhZGRyZXNzRicvJSlydGFibGVpZEdRKjI0OTU0MDE2NEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9Rjk= J:=Array(1..3,1..3): J[1,1]:=(x::Array)->3: J[1,2]:=(x::Array)->x[3]*sin(x[2]*x[3]): J[1,3]:=(x::Array)->x[2]*sin(x[2]*x[3]): J[2,1]:=(x::Array)->2*x[1]: J[2,2]:=(x::Array)->-162*(x[2]+0.1): J[2,3]:=(x::Array)->cos(x[3]): J[3,1]:=(x::Array)->-x[2]*exp(-x[1]*x[2]): J[3,2]:=(x::Array)->-x[1]*exp(-x[1]*x[2]): J[3,3]:=(x::Array)->20: J; LUkmQXJyYXlHJSpwcm90ZWN0ZWRHNiMvSSQlaWRHNiIiKidmVCZcIw== x:=Array([ 0.1,0.1,-0.1]); J[1,2](x); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEieEYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtYWN0aW9uR0YkNiUtSShtZmVuY2VkR0YkNigtSSdtdGFibGVHRiQ2NS1JJG10ckdGJDYoLUkkbXRkR0YkNigtSSNtbkdGJDYkUSQwLjFGJ0Y5LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0Zeby8lK2dyb3VwYWxpZ25HRl5vLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmVvRmVuLUZmbjYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmBwRmhuRjlGXG9GX29GYW9GY29GZm9GXG9GX29GYW8vJSZhbGlnbkdRJWF4aXNGJy9GXW9RKWJhc2VsaW5lRicvRmBvUSdjZW50ZXJGJy9GYm9RJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0YxLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGX3EvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGanEvJSZmcmFtZUdGanEvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y9LyUtZXF1YWxjb2x1bW5zR0Y9LyUtZGlzcGxheXN0eWxlR0Y9LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRmdxRjkvSSttc2VtYW50aWNzR0YkUSdWZWN0b3JGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zdcy8lK2FjdGlvbnR5cGVHUS5ydGFibGVhZGRyZXNzRicvJSlydGFibGVpZEdRKjI0OTU1MTQ2OEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9Rjk= JCIrTUwkKSoqKiohIzg= x0:=Array([0.1,0.1,-0.1]); newton2(3,F,J,x0,.000000000001,10); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjeDBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2KC1JJG10ZEdGJDYoLUkjbW5HRiQ2JFEkMC4xRidGOS8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGXm8vJStncm91cGFsaWduR0Zeby8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0Zlb0Zlbi1GZm42KC1GIzYlLUY2Ni1RKiZ1bWludXMwO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZgcEZobkY5RlxvRl9vRmFvRmNvRmZvRlxvRl9vRmFvLyUmYWxpZ25HUSVheGlzRicvRl1vUSliYXNlbGluZUYnL0Zgb1EnY2VudGVyRicvRmJvUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGMS8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRl9xLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmpxLyUmZnJhbWVHRmpxLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGPS8lLWVxdWFsY29sdW1uc0dGPS8lLWRpc3BsYXlzdHlsZUdGPS8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZncUY5L0krbXNlbWFudGljc0dGJFEnVmVjdG9yRicvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGXXMvJSthY3Rpb250eXBlR1EucnRhYmxlYWRkcmVzc0YnLyUpcnRhYmxlaWRHUSoyNDk1NTI0NjBGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiMUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2KC1JJG10ZEdGJDYoLUYsNiRRLTAuNDk5ODY5NjczMEYnRi8vJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRmpuLyUrZ3JvdXBhbGlnbkdGam4vJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGYW8tRlk2KC1GLDYkUS4wLjAxOTQ2Njg0ODU1RidGL0ZobkZbb0Zdb0Zfb0Ziby1GWTYoLUYjNiUtRjM2LVEqJnVtaW51czA7RidGL0Y2L0Y6RjhGPEY+RkBGQkZEL0ZHUSwwLjIyMjIyMjJlbUYnL0ZKRmJwLUYsNiRRLTAuNTIxNTIwNDcxOUYnRi9GL0ZobkZbb0Zdb0Zfb0Zib0ZobkZbb0Zdby8lJmFsaWduR1ElYXhpc0YnL0ZpblEpYmFzZWxpbmVGJy9GXG9RJ2NlbnRlckYnL0Zeb1EnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRjsvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZkcS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJjAuOGVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0Zfci8lJmZyYW1lR0Zfci8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjgvJS1lcXVhbGNvbHVtbnNHRjgvJS1kaXNwbGF5c3R5bGVHRjgvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dGXHJGLy9JK21zZW1hbnRpY3NHRiRRJ1ZlY3RvckYnLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmJzLyUrYWN0aW9udHlwZUdRLnJ0YWJsZWFkZHJlc3NGJy8lKXJ0YWJsZWlkR1EqMjQ5NTU2MTQwRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRjhGLw== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiMkYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2KC1JJG10ZEdGJDYoLUYsNiRRLTAuNTAwMDE0MjQwMkYnRi8vJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRmpuLyUrZ3JvdXBhbGlnbkdGam4vJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGYW8tRlk2KC1GLDYkUS4wLjAwMTU4ODU5MTMwRidGL0ZobkZbb0Zdb0Zfb0Ziby1GWTYoLUYjNiUtRjM2LVEqJnVtaW51czA7RidGL0Y2L0Y6RjhGPEY+RkBGQkZEL0ZHUSwwLjIyMjIyMjJlbUYnL0ZKRmJwLUYsNiRRLTAuNTIzNTU2OTY0NEYnRi9GL0ZobkZbb0Zdb0Zfb0Zib0ZobkZbb0Zdby8lJmFsaWduR1ElYXhpc0YnL0ZpblEpYmFzZWxpbmVGJy9GXG9RJ2NlbnRlckYnL0Zeb1EnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRjsvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZkcS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJjAuOGVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0Zfci8lJmZyYW1lR0Zfci8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjgvJS1lcXVhbGNvbHVtbnNHRjgvJS1kaXNwbGF5c3R5bGVHRjgvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dGXHJGLy9JK21zZW1hbnRpY3NHRiRRJ1ZlY3RvckYnLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmJzLyUrYWN0aW9udHlwZUdRLnJ0YWJsZWFkZHJlc3NGJy8lKXJ0YWJsZWlkR1EqMjQ5NTU4ODUyRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRjhGLw== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiM0YnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2KC1JJG10ZEdGJDYoLUYsNiRRLTAuNTAwMDAwMTEzM0YnRi8vJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRmpuLyUrZ3JvdXBhbGlnbkdGam4vJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGYW8tRlk2KC1GLDYkUS8wLjAwMDAxMjQ0NDc4MEYnRi9GaG5GW29GXW9GX29GYm8tRlk2KC1GIzYlLUYzNi1RKiZ1bWludXMwO0YnRi9GNi9GOkY4RjxGPkZARkJGRC9GR1EsMC4yMjIyMjIyZW1GJy9GSkZicC1GLDYkUS0wLjUyMzU5ODQ1MDBGJ0YvRi9GaG5GW29GXW9GX29GYm9GaG5GW29GXW8vJSZhbGlnbkdRJWF4aXNGJy9GaW5RKWJhc2VsaW5lRicvRlxvUSdjZW50ZXJGJy9GXm9RJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0Y7LyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGZHEvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGX3IvJSZmcmFtZUdGX3IvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y4LyUtZXF1YWxjb2x1bW5zR0Y4LyUtZGlzcGxheXN0eWxlR0Y4LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRlxyRi8vSSttc2VtYW50aWNzR0YkUSdWZWN0b3JGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zicy8lK2FjdGlvbnR5cGVHUS5ydGFibGVhZGRyZXNzRicvJSlydGFibGVpZEdRKjI0OTU2MTUxMkYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y4Ri8= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiNEYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2KC1JJG10ZEdGJDYoLUYsNiRRLTAuNTAwMDAwMDAwMEYnRi8vJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRmpuLyUrZ3JvdXBhbGlnbkdGam4vJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGYW8tRlk2KC1GIzYmLUYsNiRRJzcuNTQ3OUYnRi8tRjM2LVExJkludmlzaWJsZVRpbWVzO0YnRi9GNi9GOkY4RjxGPkZARkJGREZGL0ZKRkgtSSVtc3VwR0YkNiUtRiw2JFEjMTBGJ0YvLUYsNiRRJC0xMEYnRi8vJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnRi9GaG5GW29GXW9GX29GYm8tRlk2KC1GIzYlLUYzNi1RKiZ1bWludXMwO0YnRi9GNkZecEY8Rj5GQEZCRkQvRkdRLDAuMjIyMjIyMmVtRicvRkpGZHEtRiw2JFEtMC41MjM1OTg3NzU2RidGL0YvRmhuRltvRl1vRl9vRmJvRmhuRltvRl1vLyUmYWxpZ25HUSVheGlzRicvRmluUSliYXNlbGluZUYnL0Zcb1EnY2VudGVyRicvRl5vUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGOy8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRmZyLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmFzLyUmZnJhbWVHRmFzLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGOC8lLWVxdWFsY29sdW1uc0dGOC8lLWRpc3BsYXlzdHlsZUdGOC8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0Zec0YvL0krbXNlbWFudGljc0dGJFEnVmVjdG9yRicvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGZHQvJSthY3Rpb250eXBlR1EucnRhYmxlYWRkcmVzc0YnLyUpcnRhYmxlaWRHUSoyNDk1NjUzMjRGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGOEYv LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiNUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2KC1JJG10ZEdGJDYoLUYsNiRRLTAuNTAwMDAwMDAwMEYnRi8vJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRmpuLyUrZ3JvdXBhbGlnbkdGam4vJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGYW8tRlk2KC1GIzYlLUYzNi1RKiZ1bWludXMwO0YnRi9GNi9GOkY4RjxGPkZARkJGRC9GR1EsMC4yMjIyMjIyZW1GJy9GSkZdcC1GIzYmLUYsNiRRKzQuODc1MzAzMjNGJ0YvLUYzNi1RMSZJbnZpc2libGVUaW1lcztGJ0YvRjZGW3BGPEY+RkBGQkZERkYvRkpGSC1JJW1zdXBHRiQ2JS1GLDYkUSMxMEYnRi8tRiw2JFEkLTExRidGLy8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGL0YvRmhuRltvRl1vRl9vRmJvLUZZNigtRiM2JUZoby1GLDYkUS0wLjUyMzU5ODc3NTZGJ0YvRi9GaG5GW29GXW9GX29GYm9GaG5GW29GXW8vJSZhbGlnbkdRJWF4aXNGJy9GaW5RKWJhc2VsaW5lRicvRlxvUSdjZW50ZXJGJy9GXm9RJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0Y7LyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGaHIvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGY3MvJSZmcmFtZUdGY3MvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y4LyUtZXF1YWxjb2x1bW5zR0Y4LyUtZGlzcGxheXN0eWxlR0Y4LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRmBzRi8vSSttc2VtYW50aWNzR0YkUSdWZWN0b3JGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZmdC8lK2FjdGlvbnR5cGVHUS5ydGFibGVhZGRyZXNzRicvJSlydGFibGVpZEdRKjI0OTU2ODkzMkYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y4Ri8= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiNkYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2KC1JJG10ZEdGJDYoLUYsNiRRLTAuNTAwMDAwMDAwMEYnRi8vJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRmpuLyUrZ3JvdXBhbGlnbkdGam4vJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGYW8tRlk2KC1GIzYmLUYsNiRRLDEuMzA1Nzk3MDY0RidGLy1GMzYtUTEmSW52aXNpYmxlVGltZXM7RidGL0Y2L0Y6RjhGPEY+RkBGQkZERkYvRkpGSC1JJW1zdXBHRiQ2JS1GLDYkUSMxMEYnRi8tRiw2JFEkLTExRidGLy8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRidGL0ZobkZbb0Zdb0Zfb0Ziby1GWTYoLUYjNiUtRjM2LVEqJnVtaW51czA7RidGL0Y2Rl5wRjxGPkZARkJGRC9GR1EsMC4yMjIyMjIyZW1GJy9GSkZkcS1GLDYkUS0wLjUyMzU5ODc3NTZGJ0YvRi9GaG5GW29GXW9GX29GYm9GaG5GW29GXW8vJSZhbGlnbkdRJWF4aXNGJy9GaW5RKWJhc2VsaW5lRicvRlxvUSdjZW50ZXJGJy9GXm9RJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0Y7LyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGZnIvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGYXMvJSZmcmFtZUdGYXMvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y4LyUtZXF1YWxjb2x1bW5zR0Y4LyUtZGlzcGxheXN0eWxlR0Y4LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRl5zRi8vSSttc2VtYW50aWNzR0YkUSdWZWN0b3JGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZkdC8lK2FjdGlvbnR5cGVHUS5ydGFibGVhZGRyZXNzRicvJSlydGFibGVpZEdRKjI0OTU3MDg1NkYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y4Ri8= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbXNHRiQ2I1Eqc29sdXRpb249RictSSNtb0dGJDYtUSIsRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2KC1JJG10ZEdGJDYoLUkjbW5HRiQ2JFEtMC41MDAwMDAwMDAwRidGMy8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGW28vJStncm91cGFsaWduR0Zbby8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0Ziby1GWTYoLUYjNiYtRmZuNiRRLDEuMzA1Nzk3MDY0RidGMy1GMDYtUTEmSW52aXNpYmxlVGltZXM7RidGM0Y2L0Y6RjhGPEY+RkBGQkZERkYvRkpGSC1JJW1zdXBHRiQ2JS1GZm42JFEjMTBGJ0YzLUZmbjYkUSQtMTFGJ0YzLyUxc3VwZXJzY3JpcHRzaGlmdEdRIjBGJ0YzRmluRlxvRl5vRmBvRmNvLUZZNigtRiM2JS1GMDYtUSomdW1pbnVzMDtGJ0YzRjZGX3BGPEY+RkBGQkZEL0ZHUSwwLjIyMjIyMjJlbUYnL0ZKRmVxLUZmbjYkUS0wLjUyMzU5ODc3NTZGJ0YzRjNGaW5GXG9GXm9GYG9GY29GaW5GXG9GXm8vJSZhbGlnbkdRJWF4aXNGJy9Gam5RKWJhc2VsaW5lRicvRl1vUSdjZW50ZXJGJy9GX29RJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0Y7LyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGZ3IvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGYnMvJSZmcmFtZUdGYnMvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y4LyUtZXF1YWxjb2x1bW5zR0Y4LyUtZGlzcGxheXN0eWxlR0Y4LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRl9zRjMvSSttc2VtYW50aWNzR0YkUSdWZWN0b3JGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0ZldC8lK2FjdGlvbnR5cGVHUS5ydGFibGVhZGRyZXNzRicvJSlydGFibGVpZEdRKjI0OTU3NDUwOEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y4RjM= NiRRLGl0ZXJhdGlvbnM9NiIiIig=
<Text-field style="Heading 1" layout="Heading 1">Quiz 6</Text-field> f1:=(x::Array) -> 2*sin(x[1])-x[2]-1; f2:=(x::Array)->x[1]^2-x[2]^2-4; F1:= 2*sin(x1)-x2-1=0; F2:= x1^2-x2^2-4=0; f:=Array([f1,f2]); j11:=(x::Array) -> 2*cos(x[1]); j12:=(x::Array) -> -1; j21:=(x::Array)->2*x[1]; j22:=(x::Array)->-2*x[2]; Jac:=Array([[j11,j12],[j21,j22]]); with(plots):implicitplot({F1,F2},x1=-5..5,x2=-5..5); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjZjFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiUtRiM2JS1GLDYlUSJ4RidGL0YyLUY2Ni1RIzo6RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORlotRiw2JVEmQXJyYXlGJ0YvRjItRjY2LVEnJnJhcnI7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW4tRiM2Jy1GIzYlLUkjbW5HRiQ2JFEiMkYnRjktRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUYjNiUtRiw2JVEkc2luRicvRjBGPUY5LUY2Ni1RMCZBcHBseUZ1bmN0aW9uO0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUkobWZlbmNlZEdGJDYkLUYjNiMtSSVtc3ViR0YkNiVGUy1GIzYjLUZhbzYkUSIxRidGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYnRjktRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZkcS1GZnA2JUZTLUYjNiNGYG9GXXFGYHFGanA= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjZjJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiUtRiM2JS1GLDYlUSJ4RidGL0YyLUY2Ni1RIzo6RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSYwLjBlbUYnL0ZORlotRiw2JVEmQXJyYXlGJ0YvRjItRjY2LVEnJnJhcnI7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW4tRiM2Jy1GIzYjLUkobXN1YnN1cEdGJDYnRlMtRiM2Iy1JI21uR0YkNiRRIjFGJ0Y5LUZmbzYkUSIyRidGOS8lMXN1cGVyc2NyaXB0c2hpZnRHUSIwRicvJS9zdWJzY3JpcHRzaGlmdEdGXnAtRjY2LVEoJm1pbnVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EsMC4yMjIyMjIyZW1GJy9GTkZlcC1GIzYjLUZhbzYnRlMtRiM2I0Zpb0Zpb0ZccEZfcEZhcC1GZm82JFEiNEYnRjk= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjRjFGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiUtRiM2Jy1GIzYlLUkjbW5HRiQ2JFEiMkYnRjktRjY2LVExJkludmlzaWJsZVRpbWVzO0YnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZnbi1GIzYlLUYsNiVRJHNpbkYnL0YwRj1GOS1GNjYtUTAmQXBwbHlGdW5jdGlvbjtGJ0Y5RjtGPkZARkJGREZGRkhGZm5GaG4tSShtZmVuY2VkR0YkNiQtRiM2Iy1GLDYlUSN4MUYnRi9GMkY5LUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GXnAtRiw2JVEjeDJGJ0YvRjJGam8tRlY2JFEiMUYnRjktRjY2LVEiPUYnRjlGO0Y+RkBGQkZERkZGSEZKRk0tRlY2JFEiMEYnRjk= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEjRjJGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUYjNiUtRiM2Jy1GIzYjLUklbXN1cEdGJDYlLUYsNiVRI3gxRidGL0YyLUkjbW5HRiQ2JFEiMkYnRjkvJTFzdXBlcnNjcmlwdHNoaWZ0R1EiMEYnLUY2Ni1RKCZtaW51cztGJ0Y5RjtGPkZARkJGREZGRkgvRktRLDAuMjIyMjIyMmVtRicvRk5GYG8tRiM2Iy1GVjYlLUYsNiVRI3gyRidGL0YyRmVuRmluRlxvLUZmbjYkUSI0RidGOS1GNjYtUSI9RidGOUY7Rj5GQEZCRkRGRkZIRkpGTS1GZm42JFEiMEYnRjk= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEiZkYnLyUnaXRhbGljR1EldHJ1ZUYnLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWNGJy1JI21vR0YkNi1RIzo9RicvRjNRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR0Y9LyUpc3RyZXRjaHlHRj0vJSpzeW1tZXRyaWNHRj0vJShsYXJnZW9wR0Y9LyUubW92YWJsZWxpbWl0c0dGPS8lJ2FjY2VudEdGPS8lJ2xzcGFjZUdRLDAuMjc3Nzc3OGVtRicvJSdyc3BhY2VHRkwtSShtYWN0aW9uR0YkNiUtSShtZmVuY2VkR0YkNigtSSdtdGFibGVHRiQ2NS1JJG10ckdGJDYnLUkkbXRkR0YkNigtRiw2JVEjZjFGJ0YvRjIvJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRl1vLyUrZ3JvdXBhbGlnbkdGXW8vJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGZG8tRmZuNigtRiw2JVEjZjJGJ0YvRjJGW29GXm9GYG9GYm9GZW9GW29GXm9GYG8vJSZhbGlnbkdRJWF4aXNGJy9GXG9RKWJhc2VsaW5lRicvRl9vUSdjZW50ZXJGJy9GYW9RJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0YxLyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGaXAvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGZHEvJSZmcmFtZUdGZHEvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y9LyUtZXF1YWxjb2x1bW5zR0Y9LyUtZGlzcGxheXN0eWxlR0Y9LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRmFxRjkvSSttc2VtYW50aWNzR0YkUSdWZWN0b3JGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Znci8lK2FjdGlvbnR5cGVHUS5ydGFibGVhZGRyZXNzRicvJSlydGFibGVpZEdRKjI0OTU3NzcwOEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y9Rjk= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEkajExRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYlLUYjNiUtRiw2JVEieEYnRi9GMi1GNjYtUSM6OkYnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZaLUYsNiVRJkFycmF5RidGL0YyLUY2Ni1RJyZyYXJyO0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUYjNiUtSSNtbkdGJDYkUSIyRidGOS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW4tRiM2JS1GLDYlUSRjb3NGJy9GMEY9RjktRjY2LVEwJkFwcGx5RnVuY3Rpb247RidGOUY7Rj5GQEZCRkRGRkZIRllGZW4tSShtZmVuY2VkR0YkNiQtRiM2Iy1JJW1zdWJHRiQ2JUZTLUYjNiMtRl9vNiRRIjFGJ0Y5LyUvc3Vic2NyaXB0c2hpZnRHUSIwRidGOQ== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEkajEyRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYlLUYjNiUtRiw2JVEieEYnRi9GMi1GNjYtUSM6OkYnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZaLUYsNiVRJkFycmF5RidGL0YyLUY2Ni1RJyZyYXJyO0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUYjNiQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmJvLUkjbW5HRiQ2JFEiMUYnRjk= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEkajIxRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYlLUYjNiUtRiw2JVEieEYnRi9GMi1GNjYtUSM6OkYnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZaLUYsNiVRJkFycmF5RidGL0YyLUY2Ni1RJyZyYXJyO0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUYjNiUtSSNtbkdGJDYkUSIyRidGOS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW4tSSVtc3ViR0YkNiVGUy1GIzYjLUZfbzYkUSIxRidGOS8lL3N1YnNjcmlwdHNoaWZ0R1EiMEYn LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYlLUkjbWlHRiQ2JVEkajIyRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1GIzYlLUYjNiUtRiw2JVEieEYnRi9GMi1GNjYtUSM6OkYnRjlGO0Y+RkBGQkZERkZGSC9GS1EmMC4wZW1GJy9GTkZaLUYsNiVRJkFycmF5RidGL0YyLUY2Ni1RJyZyYXJyO0YnRjlGO0Y+RkBGQkZERkZGSEZZRmVuLUYjNiQtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORmJvLUYjNiUtSSNtbkdGJDYkUSIyRidGOS1GNjYtUTEmSW52aXNpYmxlVGltZXM7RidGOUY7Rj5GQEZCRkRGRkZIRllGZW4tSSVtc3ViR0YkNiVGUy1GIzYjRmZvLyUvc3Vic2NyaXB0c2hpZnRHUSIwRic= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEkSmFjRicvJSdpdGFsaWNHUSV0cnVlRicvJSxtYXRodmFyaWFudEdRJ2l0YWxpY0YnLUkjbW9HRiQ2LVEjOj1GJy9GM1Enbm9ybWFsRicvJSZmZW5jZUdRJmZhbHNlRicvJSpzZXBhcmF0b3JHRj0vJSlzdHJldGNoeUdGPS8lKnN5bW1ldHJpY0dGPS8lKGxhcmdlb3BHRj0vJS5tb3ZhYmxlbGltaXRzR0Y9LyUnYWNjZW50R0Y9LyUnbHNwYWNlR1EsMC4yNzc3Nzc4ZW1GJy8lJ3JzcGFjZUdGTC1JKG1hY3Rpb25HRiQ2JS1JKG1mZW5jZWRHRiQ2KC1GIzYmLUknbXRhYmxlR0YkNjYtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUYsNiVRJGoxMUYnRi9GMi8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGX28vJStncm91cGFsaWduR0Zfby8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0Zmby1GaG42KC1GLDYlUSRqMTJGJ0YvRjJGXW9GYG9GYm9GZG9GZ29GXW9GYG9GYm8tRmVuNictRmhuNigtRiw2JVEkajIxRidGL0YyRl1vRmBvRmJvRmRvRmdvLUZobjYoLUYsNiVRJGoyMkYnRi9GMkZdb0Zgb0Zib0Zkb0Znb0Zdb0Zgb0Ziby8lJmFsaWduR1ElYXhpc0YnL0Zeb1EpYmFzZWxpbmVGJy9GYW9RJ2NlbnRlckYnL0Zjb1EnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRjEvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZncS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJjAuOGVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0Zici8lJmZyYW1lR0Zici8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRj0vJS1lcXVhbGNvbHVtbnNHRj0vJS1kaXNwbGF5c3R5bGVHRj0vJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dGX3IvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOUY5L0krbXNlbWFudGljc0dGJFEnTWF0cml4RicvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGanMvJSthY3Rpb250eXBlR1EucnRhYmxlYWRkcmVzc0YnLyUpcnRhYmxlaWRHUSoyNDk1Nzk0NjhGJ0Zlc0Zoc0Y5 NiYtJSdDVVJWRVNHNiU3aG43JCQhI10hIiIkITEjPT09PT09ZSUhIzo3JCQhMUV5TS84UjxbISM6JCEyTjxfY3AzRVElISM7NyQkISRsJSEiIyQhI1UhIiI3JCQhMUZGRkZGRkZZISM6JCExdHNzc3Nzc1QhIzo3JCQhI1khIiIkISQ5JSEiIzckJCExUV80UV80UVchIzokITFpWiE+dy8+J1IhIzo3JCQhMSI0NDQ0NDRIJSEjOiQhI1EhIiI3JCQhJEQlISIjJCEkdiQhIiM3JCQhI1UhIiIkITIoKSkpKSkpKSkpKSkpKW8kISM7NyQkITFVb3QlKnk6alMhIzokITFlSkUwQCVvYCQhIzo3JCQhMiYqKioqKioqKioqKipSUiEjOyQhI00hIiI3JCQhMnR4eHh4eHgoUSEjOyQhMkNBQUFBQUFLJCEjOzckJCEjUSEiIiQhMicqKioqKioqKioqKlxBJCEjOzckJCEyUCMpZXFrPFRwJCEjOyQhMmw8VEhOIyllNSQhIzs3JCQhI08hIiIkISNJISIiNyQkISZEXiQhIiUkITIoKioqKioqKioqKlwoKUchIzs3JCQhI00hIiIkITFWciZHOWRHdSMhIzo3JCQhMUxMTExMTExMISM6JCExbm1tbW1tbUUhIzo3JCQhJXZLISIkJCEjRSEiIjckJCEydiZHOWRHOWRKISM7JCExVnImRzlkR1cjISM6NyQkISNJISIiJCEyTUxMTExMTEIjISM7NyQkITJaUTpZUTpZKUghIzskITJiaCVROllROkEhIzs3JCQhMjpkRzlkRzkoSCEjOyQhI0EhIiI3JCQhMmttbW1tbW0iRyEjOyQhMk1MTExMTEwpPiEjOzckJCEyYkc5ZEc5ZG8jISM7JCEjPSEiIjckJCEyW1hYWFhYWGwjISM7JCEyY2FhYWFhYXUiISM7NyQkISNFISIiJCEyLysrKysrK2wiISM7NyQkISNEISIiJCEjOiEiIjckJCEyT0xMTExMTFYjISM7JCEjOSEiIjckJCEyY2JiYmJiYk4jISM7JCEyWFdXV1dXV0MiISM7NyQkITJNTExMTExMQiMhIzskISM1ISIiNyQkISVEQSEiJCQhMS0rKysrK10oKiEjOzckJCEjQSEiIiQhMS8rKysrKyshKiEjOzckJCEyVnImRzlkRzlAISM7JCExZEc5ZEc5ZG8hIzs3JCQhJDMjISIjJCEiJyEiIjckJCExTExMTExMTD8hIzokITFvbW1tbW1tTyEjOzckJCEjPyEiIiQhIiMhIiI3JCQhIz8hIiIkITA3cWFZXldyKiEjSjckJCEjPyEiIiQiIiMhIiI3JCQhJDAjISIjJCIxKioqKioqKioqKioqKlwlISM7NyQkISQzIyEiIyQiIichIiI3JCQhI0EhIiIkIjEwKysrKysrISohIzs3JCQhMk1MTExMTExCIyEjOyQiIzUhIiI3JCQhMm1tbW1tbW1FIyEjOyQiMmttbW1tbW0xIiEjOzckJCEyT0xMTExMTFYjISM7JCIjOSEiIjckJCEjRSEiIiQiMi8rKysrKytsIiEjOzckJCEyYkc5ZEc5ZG8jISM7JCIjPSEiIjckJCEjSCEiIiQiMjArKysrKys1IyEjOzckJCEyOmRHOWRHOShIISM7JCIjQSEiIjckJCEjSSEiIiQiMk1MTExMTExCIyEjOzckJCEldkshIiQkIiNFISIiNyQkISNNISIiJCIxVnImRzlkR3UjISM6NyQkISNPISIiJCIjSSEiIjckJCEjUSEiIiQiMicqKioqKioqKioqKlxBJCEjOzckJCEyJioqKioqKioqKioqKlJSISM7JCIjTSEiIjckJCEjVSEiIiQiMigpKSkpKSkpKSkpKSkpbyQhIzs3JCQhMSI0NDQ0NDRIJSEjOiQiI1EhIiI3JCQhI1khIiIkIiQ5JSEiIzckJCEkbCUhIiMkIiNVISIiNyQkISNdISIiJCIxIz09PT09PWUlISM6N2huNyQkIiNdISIiJCIxIz09PT09PWUlISM6NyQkIjFFeU0vOFI8WyEjOiQiMk48X2NwM0VRJSEjOzckJCIkbCUhIiMkIiNVISIiNyQkIjFGRkZGRkZGWSEjOiQiMXRzc3Nzc3NUISM6NyQkIiNZISIiJCIkOSUhIiM3JCQiMVFfNFFfNFFXISM6JCIxaVohPncvPidSISM6NyQkIjEiNDQ0NDQ0SCUhIzokIiNRISIiNyQkIiREJSEiIyQiJHYkISIjNyQkIiNVISIiJCIyKCkpKSkpKSkpKSkpKSlvJCEjOzckJCIxVW90JSp5OmpTISM6JCIxZUpFMEAlb2AkISM6NyQkIjImKioqKioqKioqKioqUlIhIzskIiNNISIiNyQkIjJ0eHh4eHh4KFEhIzskIjJDQUFBQUFBSyQhIzs3JCQiI1EhIiIkIjInKioqKioqKioqKipcQSQhIzs3JCQiMlAjKWVxazxUcCQhIzskIjJsPFRITiMpZTUkISM7NyQkIiNPISIiJCIjSSEiIjckJCImRF4kISIlJCIyKCoqKioqKioqKipcKClHISM7NyQkIiNNISIiJCIxVnImRzlkR3UjISM6NyQkIjJOTExMTExMTCQhIzskIjFubW1tbW1tRSEjOjckJCIyLysrKysrXUYkISM7JCIjRSEiIjckJCIydiZHOWRHOWRKISM7JCIxVnImRzlkR1cjISM6NyQkIiNJISIiJCIyTUxMTExMTEIjISM7NyQkIjJaUTpZUTpZKUghIzskIjJiaCVROllROkEhIzs3JCQiMjpkRzlkRzkoSCEjOyQiI0EhIiI3JCQiMW5tbW1tbTtHISM6JCIyTUxMTExMTCk+ISM7NyQkIjEnRzlkRzlkbyMhIzokIiM9ISIiNyQkIjJbWFhYWFhYbCMhIzskIjJjYWFhYWFhdSIhIzs3JCQiI0UhIiIkIjIvKysrKysrbCIhIzs3JCQiI0QhIiIkIiM6ISIiNyQkIjJPTExMTExMViMhIzskIiM5ISIiNyQkIjJjYmJiYmJiTiMhIzskIjJYV1dXV1dXQyIhIzs3JCQiMk1MTExMTExCIyEjOyQiIzUhIiI3JCQiJURBISIkJCIxLCsrKysrXSgqISM7NyQkIiNBISIiJCIxMCsrKysrKyEqISM7NyQkIjJWciZHOWRHOUAhIzskIjFkRzlkRzlkbyEjOzckJCIkMyMhIiMkIiInISIiNyQkIjFMTExMTExMPyEjOiQiMW9tbW1tbW1PISM7NyQkIiM/ISIiJCIiIyEiIjckJCIjPyEiIiQiMXUnKW8lb3NtSykhI0s3JCQiIz8hIiIkISIjISIiNyQkIiQwIyEiIyQhMSoqKioqKioqKioqKipcJSEjOzckJCIkMyMhIiMkISInISIiNyQkIiNBISIiJCExLysrKysrKyEqISM7NyQkIjJNTExMTExMQiMhIzskISM1ISIiNyQkIjJtbW1tbW1tRSMhIzskITJrbW1tbW1tMSIhIzs3JCQiMk9MTExMTExWIyEjOyQhIzkhIiI3JCQiI0UhIiIkITIvKysrKysrbCIhIzs3JCQiMSdHOWRHOWRvIyEjOiQhIz0hIiI3JCQiI0ghIiIkITIwKysrKysrNSMhIzs3JCQiMjpkRzlkRzkoSCEjOyQhI0EhIiI3JCQiI0khIiIkITJNTExMTExMQiMhIzs3JCQiMi8rKysrK11GJCEjOyQhI0UhIiI3JCQiI00hIiIkITFWciZHOWRHdSMhIzo3JCQiI08hIiIkISNJISIiNyQkIiNRISIiJCEyJyoqKioqKioqKioqXEEkISM7NyQkIjImKioqKioqKioqKioqUlIhIzskISNNISIiNyQkIiNVISIiJCEyKCkpKSkpKSkpKSkpKSlvJCEjOzckJCIxIjQ0NDQ0NEglISM6JCEjUSEiIjckJCIjWSEiIiQhJDklISIjNyQkIiRsJSEiIyQhI1UhIiI3JCQiI10hIiIkITEjPT09PT09ZSUhIzotJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lJ0NVUlZFU0c2JDdhcDckJCEjXSEiIiQiMHhpS1wmW3kiKiEjOjckJCExLlkyLFcsSVwhIzokIjAuWTIsVyxJKiEjOjckJCEjWSEiIiQiMEhwRTI/USgpKiEjOjckJCExXCkpcC8kKWZuWCEjOiQiMShbKSlwLyQpZm4qISM7NyQkISNVISIiJCIxaTxGW2FeSnUhIzs3JCQhMXZwJEgiUXcqMyUhIzokIiInISIiNyQkISNRISIiJCIxelYmKT15OlBBISM7NyQkITJ2K3BDUClvJ3kkISM7JCIiIyEiIjckJCEyKCo0cyRwbmxwUCEjOyQiMnkqNHMkcG5scCIhIzw3JCQhMTNdSmghcEBjJCEjOiQhIiMhIiI3JCQhI00hIiIkITF2TFlmejwqKVshIzs3JCQhMlhHVzlRIipSTSQhIzskISInISIiNyQkITJQNllcJj0uKEckISM7JCExbClRMFgib0hyISM7NyQkITJZbmJSKXlJVUohIzskISM1ISIiNyQkISNJISIiJCEyWHQ+aCxTQUciISM7NyQkITFuUUslKjM0UEghIzokISM5ISIiNyQkITJtJXBcOShSXCdHISM7JCEyTDAuYkdnXWAiISM7NyQkITE8QztXXVNCRiEjOiQhIz0hIiI3JCQhI0UhIiIkITFHSGtWRitKPyEjOjckJCEyWDBWXWJUWVsjISM7JCEjQSEiIjckJCEyb3UnZUNjYU9BISM7JCExYEtUdlZYakQhIzo3JCQhMWpueCNRKmY2QSEjOiQhI0UhIiI3JCQhI0EhIiIkITA9UnchRypwaCMhIzk3JCQhMlh1MkYlUiI+NSMhIzskITFjQUhkZzMpcCMhIzo3JCQhIz0hIiIkITIuUmM8RSZwWkghIzs3JCQhMjEjcEBQRSozViIhIzskITIkekl5aXQ1cEghIzs3JCQhIzkhIiIkITIyI3AoKmYlKiozKEghIzs3JCQhMU8/XWF1TSU9IiEjOiQhMWt6XFhEbDpHISM6NyQkISM1ISIiJCEyTno6J3A+JUhvIyEjOzckJCExVy1jYyk0QGwqISM7JCEyYShSTTkhKnlNRSEjOzckJCExOFAhXC5xMlMqISM7JCEjRSEiIjckJCExXCo+RyR5TnV6ISM7JCEyXys9bkBrRFMjISM7NyQkITFkXkYjSCUqM14nISM7JCEjQSEiIjckJCExYSd6ITRlZydIJyEjOyQhMU4/ND4lUi48IyEjOjckJCEiJyEiIiQhMjAyIXpZXEdIQCEjOzckJCEvYnJPUFJPWyEjOSQhMFhHamlnaiI+ISM5NyQkITBUT3BsJ1wrVSEjOiQhIz0hIiI3JCQhMkNZNEc1KipHVSQhIzwkITJRMD4oKjM1eGwiISM7NyQkITFtXDMrUmE5PyEjOyQhIzkhIiI3JCQhMURNISpvV1M0PyEjOyQhMnZsNEpiZiEqUiIhIzs3JCQhIiMhIiIkITJGNyFmaCdRdFIiISM7NyQkITFuOExSKW9qcCchIzwkITJrbzE7Sk9JOCIhIzs3JCQiIiEhIiIkISM1ISIiNyQkIjFuOExSKW9qcCchIzwkITFPSiRSKW9qcCcpISM7NyQkIiIjISIiJCExdygpNCVROG0tJyEjOzckJCIyYVUuKm9XUzQ/ISM8JCExRE0hKm9XUzRnISM7NyQkIjJtJ1wzK1JhOT8hIzwkISInISIiNyQkIjFqJTRHNSoqR1UkISM7JCExaiU0RzUqKkdVJCEjOzckJCIyMFRPcGwnXCtVISM8JCEiIyEiIjckJCIyKCpcOm50JFJPWyEjPCQhLmJyT1BSTykhIzk3JCQiIichIiIkIjEzMiF6WVxHSCIhIzs3JCQiMWAneiE0ZWcnSCchIzskIjJsTT80PiVSLjwhIzw3JCQiMWFeRiNIJSozXichIzskIiIjISIiNyQkIjFaKj5HJHlOdXohIzskIjFfKz1uQGtEUyEjOzckJCIxOFAhXC5xMlMqISM7JCIiJyEiIjckJCIxVy1jYyk0QGwqISM7JCIxYyhSTTkhKnlNJyEjOzckJCIjNSEiIiQiMUh6OidwPiVIbyEjOzckJCIxTz9dYXVNJT0iISM6JCIwa3pcWERsOikhIzo3JCQiIzkhIiIkIjEuI3AoKmYlKiozKCohIzs3JCQiMi8jcEBQRSozViIhIzskIjElekl5aXQ1cCohIzs3JCQiIz0hIiIkIjEuUmM8RSZwWiohIzs3JCQiMlh1MkYlUiI+NSMhIzskIjFjRCNIZGczKXAhIzs3JCQiI0EhIiIkIjEsPVJ3IUcqcGghIzs3JCQiMWpueCNRKmY2QSEjOiQiIichIiI3JCQiMm91J2VDY2FPQSEjOyQiMGBLVHZWWGomISM6NyQkIjFiSS9iOmslWyMhIzokIiIjISIiNyQkIiNFISIiJCIxS0dIa1ZGK0ohIzw3JCQiMTxDO1ddU0JGISM6JCEiIyEiIjckJCIxWXBcOShSXCdHISM6JCExayVwXDkoUlxZISM7NyQkIjFuUUslKjM0UEghIzokISInISIiNyQkIiNJISIiJCExYkUhKVEpKmZ4ciEjOzckJCIyWW5iUil5SVVKISM7JCEjNSEiIjckJCIyUDZZXCY9LihHJCEjOyQhMk42WVwmPS4oRyIhIzs3JCQiMlhHVzlRIipSTSQhIzskISM5ISIiNyQkIiNNISIiJCEyQ21gUz8jMzY6ISM7NyQkIjEzXUpoIXBAYyQhIzokISM9ISIiNyQkIi9AUHBubHBQISM4JCEvQFBwbmxwQCEjODckJCIyditwQ1Apbyd5JCEjOyQhI0EhIiI3JCQiI1EhIiIkITJ3ViYpPXk6UEEjISM7NyQkIjF2cCRIIlF3KjMlISM6JCEjRSEiIjckJCIjVSEiIiQhMXdyI1thXkp1IyEjOjckJCIxWykpcC8kKWZuWCEjOiQhMidbKSlwLyQpZm5IISM7NyQkIiNZISIiJCEyJkhwRTI/USgpSCEjOzckJCIxLlkyLFcsSVwhIzokITEuWTIsVyxJSCEjOjckJCIjXSEiIiQhMm5GRSRcJlt5IkghIzstJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkIiIhISIiJCIiISEiIi0lK0FYRVNMQUJFTFNHNictSSNtaUc2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkc2IjY1USN4MTYiLyUnZmFtaWx5R1EoREVGQVVMVDYiLyUlc2l6ZUdRIzEwNiIvJSVib2xkR1EmZmFsc2U2Ii8lJ2l0YWxpY0dRJXRydWU2Ii8lKnVuZGVybGluZUdRJmZhbHNlNiIvJSpzdWJzY3JpcHRHUSZmYWxzZTYiLyUsc3VwZXJzY3JpcHRHUSZmYWxzZTYiLyUrZm9yZWdyb3VuZEdRKFswLDAsMF02Ii8lK2JhY2tncm91bmRHUS5bMjU1LDI1NSwyNTVdNiIvJSdvcGFxdWVHUSZmYWxzZTYiLyUrZXhlY3V0YWJsZUdRJmZhbHNlNiIvJSlyZWFkb25seUdRJmZhbHNlNiIvJSljb21wb3NlZEdRJmZhbHNlNiIvJSpjb252ZXJ0ZWRHUSZmYWxzZTYiLyUraW1zZWxlY3RlZEdRJmZhbHNlNiIvJSxwbGFjZWhvbGRlckdRJmZhbHNlNiIvJTZzZWxlY3Rpb24tcGxhY2Vob2xkZXJHUSZmYWxzZTYiLyUsbWF0aHZhcmlhbnRHUSdpdGFsaWM2Ii1JI21pRzYjL0krbW9kdWxlbmFtZUc2IkksVHlwZXNldHRpbmdHSShfc3lzbGliRzYiNjVRI3gyNiIvJSdmYW1pbHlHUShERUZBVUxUNiIvJSVzaXplR1EjMTA2Ii8lJWJvbGRHUSZmYWxzZTYiLyUnaXRhbGljR1EldHJ1ZTYiLyUqdW5kZXJsaW5lR1EmZmFsc2U2Ii8lKnN1YnNjcmlwdEdRJmZhbHNlNiIvJSxzdXBlcnNjcmlwdEdRJmZhbHNlNiIvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXTYiLyUrYmFja2dyb3VuZEdRLlsyNTUsMjU1LDI1NV02Ii8lJ29wYXF1ZUdRJmZhbHNlNiIvJStleGVjdXRhYmxlR1EmZmFsc2U2Ii8lKXJlYWRvbmx5R1EmZmFsc2U2Ii8lKWNvbXBvc2VkR1EmZmFsc2U2Ii8lKmNvbnZlcnRlZEdRJmZhbHNlNiIvJStpbXNlbGVjdGVkR1EmZmFsc2U2Ii8lLHBsYWNlaG9sZGVyR1EmZmFsc2U2Ii8lNnNlbGVjdGlvbi1wbGFjZWhvbGRlckdRJmZhbHNlNiIvJSxtYXRodmFyaWFudEdRJ2l0YWxpYzYiLSUlRk9OVEc2JSUoREVGQVVMVEclKERFRkFVTFRHIiM1JStIT1JJWk9OVEFMRyUrSE9SSVpPTlRBTEctJSVST09URzYnLSUpQk9VTkRTX1hHNiMkIiNxISIiLSUpQk9VTkRTX1lHNiMkIiNdISIiLSUtQk9VTkRTX1dJRFRIRzYjJCIlISlRISIiLSUuQk9VTkRTX0hFSUdIVEc2IyQiJSEpUSEiIi0lKUNISUxEUkVORzYi x0:=Array([-2.0,-1.0]); newton2(2,f,Jac,x0,.00001,10); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjeDBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUYjNiUtRjY2LVEqJnVtaW51czA7RidGOUY7Rj5GQEZCRkRGRkZIL0ZLUSwwLjIyMjIyMjJlbUYnL0ZORl5vLUkjbW5HRiQ2JFEkMi4wRidGOUY5LyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0Zmby8lK2dyb3VwYWxpZ25HRmZvLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRl1wLUZmbjYoLUYjNiVGam4tRmFvNiRRJDEuMEYnRjlGOUZkb0Znb0Zpb0ZbcEZecEZkb0Znb0Zpby8lJmFsaWduR1ElYXhpc0YnL0Zlb1EpYmFzZWxpbmVGJy9GaG9RJ2NlbnRlckYnL0Zqb1EnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRjEvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZkcS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJjAuOGVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0Zfci8lJmZyYW1lR0Zfci8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRj0vJS1lcXVhbGNvbHVtbnNHRj0vJS1kaXNwbGF5c3R5bGVHRj0vJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dGXHJGOS9JK21zZW1hbnRpY3NHRiRRJ1ZlY3RvckYnLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmJzLyUrYWN0aW9udHlwZUdRLnJ0YWJsZWFkZHJlc3NGJy8lKXJ0YWJsZWlkR1EqMjQ5NTg0ODkyRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRj1GOQ== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiMUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUYjNiUtRjM2LVEqJnVtaW51czA7RidGL0Y2L0Y6RjhGPEY+RkBGQkZEL0ZHUSwwLjIyMjIyMjJlbUYnL0ZKRlxvLUYsNiRRLDIuODE4NjI3OTgyRidGL0YvLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0Zjby8lK2dyb3VwYWxpZ25HRmNvLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmpvLUZZNigtRiM2JUZnbi1GLDYkUSwyLjEzNzI1NTk2NUYnRi9GL0Zhb0Zkb0Zmb0Zob0ZbcEZhb0Zkb0Zmby8lJmFsaWduR1ElYXhpc0YnL0Zib1EpYmFzZWxpbmVGJy9GZW9RJ2NlbnRlckYnL0Znb1EnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRjsvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZhcS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJjAuOGVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0Zcci8lJmZyYW1lR0Zcci8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjgvJS1lcXVhbGNvbHVtbnNHRjgvJS1kaXNwbGF5c3R5bGVHRjgvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dGaXFGLy9JK21zZW1hbnRpY3NHRiRRJ1ZlY3RvckYnLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRl9zLyUrYWN0aW9udHlwZUdRLnJ0YWJsZWFkZHJlc3NGJy8lKXJ0YWJsZWlkR1EqMjQ5NTg4MDYwRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRjhGLw== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiMkYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUYjNiUtRjM2LVEqJnVtaW51czA7RidGL0Y2L0Y6RjhGPEY+RkBGQkZEL0ZHUSwwLjIyMjIyMjJlbUYnL0ZKRlxvLUYsNiRRLDIuNzA3NjkyMzIwRidGL0YvLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0Zjby8lK2dyb3VwYWxpZ25HRmNvLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmpvLUZZNigtRiM2JUZnbi1GLDYkUSwxLjg0NTE1ODk3MUYnRi9GL0Zhb0Zkb0Zmb0Zob0ZbcEZhb0Zkb0Zmby8lJmFsaWduR1ElYXhpc0YnL0Zib1EpYmFzZWxpbmVGJy9GZW9RJ2NlbnRlckYnL0Znb1EnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRjsvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZhcS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJjAuOGVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0Zcci8lJmZyYW1lR0Zcci8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjgvJS1lcXVhbGNvbHVtbnNHRjgvJS1kaXNwbGF5c3R5bGVHRjgvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dGaXFGLy9JK21zZW1hbnRpY3NHRiRRJ1ZlY3RvckYnLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRl9zLyUrYWN0aW9udHlwZUdRLnJ0YWJsZWFkZHJlc3NGJy8lKXJ0YWJsZWlkR1EqMjQ5NTg5ODkyRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRjhGLw== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiM0YnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUYjNiUtRjM2LVEqJnVtaW51czA7RidGL0Y2L0Y6RjhGPEY+RkBGQkZEL0ZHUSwwLjIyMjIyMjJlbUYnL0ZKRlxvLUYsNiRRLDIuNzEyNDAwMjczRidGL0YvLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0Zjby8lK2dyb3VwYWxpZ25HRmNvLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmpvLUZZNigtRiM2JUZnbi1GLDYkUSwxLjgzMjI4MjQyNEYnRi9GL0Zhb0Zkb0Zmb0Zob0ZbcEZhb0Zkb0Zmby8lJmFsaWduR1ElYXhpc0YnL0Zib1EpYmFzZWxpbmVGJy9GZW9RJ2NlbnRlckYnL0Znb1EnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRjsvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZhcS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJjAuOGVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0Zcci8lJmZyYW1lR0Zcci8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjgvJS1lcXVhbGNvbHVtbnNHRjgvJS1kaXNwbGF5c3R5bGVHRjgvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dGaXFGLy9JK21zZW1hbnRpY3NHRiRRJ1ZlY3RvckYnLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRl9zLyUrYWN0aW9udHlwZUdRLnJ0YWJsZWFkZHJlc3NGJy8lKXJ0YWJsZWlkR1EqMjQ5NTk0ODUyRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRjhGLw== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiNEYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUYjNiUtRjM2LVEqJnVtaW51czA7RidGL0Y2L0Y6RjhGPEY+RkBGQkZEL0ZHUSwwLjIyMjIyMjJlbUYnL0ZKRlxvLUYsNiRRLDIuNzEyNDA5MzM5RidGL0YvLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0Zjby8lK2dyb3VwYWxpZ25HRmNvLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmpvLUZZNigtRiM2JUZnbi1GLDYkUSwxLjgzMjI1NjY0OEYnRi9GL0Zhb0Zkb0Zmb0Zob0ZbcEZhb0Zkb0Zmby8lJmFsaWduR1ElYXhpc0YnL0Zib1EpYmFzZWxpbmVGJy9GZW9RJ2NlbnRlckYnL0Znb1EnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRjsvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZhcS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJjAuOGVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0Zcci8lJmZyYW1lR0Zcci8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjgvJS1lcXVhbGNvbHVtbnNHRjgvJS1kaXNwbGF5c3R5bGVHRjgvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dGaXFGLy9JK21zZW1hbnRpY3NHRiRRJ1ZlY3RvckYnLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRl9zLyUrYWN0aW9udHlwZUdRLnJ0YWJsZWFkZHJlc3NGJy8lKXJ0YWJsZWlkR1EqMjQ5NTk3MzQwRicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRjhGLw== LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbXNHRiQ2I1Eqc29sdXRpb249RictSSNtb0dGJDYtUSIsRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUYjNiUtRjA2LVEqJnVtaW51czA7RidGM0Y2L0Y6RjhGPEY+RkBGQkZEL0ZHUSwwLjIyMjIyMjJlbUYnL0ZKRlxvLUkjbW5HRiQ2JFEsMi43MTI0MDkzMzlGJ0YzRjMvJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRmRvLyUrZ3JvdXBhbGlnbkdGZG8vJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGW3AtRlk2KC1GIzYlRmduLUZfbzYkUSwxLjgzMjI1NjY0OEYnRjNGM0Zib0Zlb0Znb0Zpb0ZccEZib0Zlb0Znby8lJmFsaWduR1ElYXhpc0YnL0Zjb1EpYmFzZWxpbmVGJy9GZm9RJ2NlbnRlckYnL0Zob1EnfGZybGVmdHxockYnLyUvYWxpZ25tZW50c2NvcGVHRjsvJSxjb2x1bW53aWR0aEdRJWF1dG9GJy8lJndpZHRoR0ZicS8lK3Jvd3NwYWNpbmdHUSYxLjBleEYnLyUuY29sdW1uc3BhY2luZ0dRJjAuOGVtRicvJSlyb3dsaW5lc0dRJW5vbmVGJy8lLGNvbHVtbmxpbmVzR0Zdci8lJmZyYW1lR0Zdci8lLWZyYW1lc3BhY2luZ0dRLDAuNGVtfjAuNWV4RicvJSplcXVhbHJvd3NHRjgvJS1lcXVhbGNvbHVtbnNHRjgvJS1kaXNwbGF5c3R5bGVHRjgvJSVzaWRlR1EmcmlnaHRGJy8lMG1pbmxhYmVsc3BhY2luZ0dGanFGMy9JK21zZW1hbnRpY3NHRiRRJ1ZlY3RvckYnLyUlb3BlbkdRIltGJy8lJmNsb3NlR1EiXUYnRmBzLyUrYWN0aW9udHlwZUdRLnJ0YWJsZWFkZHJlc3NGJy8lKXJ0YWJsZWlkR1EqMjQ5NTk5NzQ4RicvJStmb3JlZ3JvdW5kR1EoWzAsMCwwXUYnLyUpcmVhZG9ubHlHRjhGMw== NiRRLGl0ZXJhdGlvbnM9NiIiIiY= x0:=Array([2.09,.64]); newton2(2,f,Jac,x0,.00001,10); LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbWlHRiQ2JVEjeDBGJy8lJ2l0YWxpY0dRJXRydWVGJy8lLG1hdGh2YXJpYW50R1EnaXRhbGljRictSSNtb0dGJDYtUSM6PUYnL0YzUSdub3JtYWxGJy8lJmZlbmNlR1EmZmFsc2VGJy8lKnNlcGFyYXRvckdGPS8lKXN0cmV0Y2h5R0Y9LyUqc3ltbWV0cmljR0Y9LyUobGFyZ2VvcEdGPS8lLm1vdmFibGVsaW1pdHNHRj0vJSdhY2NlbnRHRj0vJSdsc3BhY2VHUSwwLjI3Nzc3NzhlbUYnLyUncnNwYWNlR0ZMLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUkjbW5HRiQ2JFElMi4wOUYnRjkvJSlyb3dhbGlnbkdRIUYnLyUsY29sdW1uYWxpZ25HRl5vLyUrZ3JvdXBhbGlnbkdGXm8vJShyb3dzcGFuR1EiMUYnLyUrY29sdW1uc3BhbkdGZW8tRmZuNigtRmluNiRRJTAuNjRGJ0Y5RlxvRl9vRmFvRmNvRmZvRlxvRl9vRmFvLyUmYWxpZ25HUSVheGlzRicvRl1vUSliYXNlbGluZUYnL0Zgb1EnY2VudGVyRicvRmJvUSd8ZnJsZWZ0fGhyRicvJS9hbGlnbm1lbnRzY29wZUdGMS8lLGNvbHVtbndpZHRoR1ElYXV0b0YnLyUmd2lkdGhHRmpwLyUrcm93c3BhY2luZ0dRJjEuMGV4RicvJS5jb2x1bW5zcGFjaW5nR1EmMC44ZW1GJy8lKXJvd2xpbmVzR1Elbm9uZUYnLyUsY29sdW1ubGluZXNHRmVxLyUmZnJhbWVHRmVxLyUtZnJhbWVzcGFjaW5nR1EsMC40ZW1+MC41ZXhGJy8lKmVxdWFscm93c0dGPS8lLWVxdWFsY29sdW1uc0dGPS8lLWRpc3BsYXlzdHlsZUdGPS8lJXNpZGVHUSZyaWdodEYnLyUwbWlubGFiZWxzcGFjaW5nR0ZicUY5L0krbXNlbWFudGljc0dGJFEnVmVjdG9yRicvJSVvcGVuR1EiW0YnLyUmY2xvc2VHUSJdRidGaHIvJSthY3Rpb250eXBlR1EucnRhYmxlYWRkcmVzc0YnLyUpcnRhYmxlaWRHUSoyNDk2MDI1NjRGJy8lK2ZvcmVncm91bmRHUShbMCwwLDBdRicvJSlyZWFkb25seUdGPUY5 LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiMUYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUYsNiRRLDIuMTIwMjYwOTEwRidGLy8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGam4vJStncm91cGFsaWduR0Zqbi8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0Zhby1GWTYoLUYsNiRRLTAuNzA2Mzk4OTEwNUYnRi9GaG5GW29GXW9GX29GYm9GaG5GW29GXW8vJSZhbGlnbkdRJWF4aXNGJy9GaW5RKWJhc2VsaW5lRicvRlxvUSdjZW50ZXJGJy9GXm9RJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0Y7LyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGZnAvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGYXEvJSZmcmFtZUdGYXEvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y4LyUtZXF1YWxjb2x1bW5zR0Y4LyUtZGlzcGxheXN0eWxlR0Y4LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRl5xRi8vSSttc2VtYW50aWNzR0YkUSdWZWN0b3JGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zkci8lK2FjdGlvbnR5cGVHUS5ydGFibGVhZGRyZXNzRicvJSlydGFibGVpZEdRKjI0OTYwNDc2NEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y4Ri8= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbW5HRiQ2JFEiMkYnLyUsbWF0aHZhcmlhbnRHUSdub3JtYWxGJy1JI21vR0YkNi1RIixGJ0YvLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUYsNiRRLDIuMTIwNjc2NjQ5RidGLy8lKXJvd2FsaWduR1EhRicvJSxjb2x1bW5hbGlnbkdGam4vJStncm91cGFsaWduR0Zqbi8lKHJvd3NwYW5HUSIxRicvJStjb2x1bW5zcGFuR0Zhby1GWTYoLUYsNiRRLTAuNzA1MTc0Mjg3NkYnRi9GaG5GW29GXW9GX29GYm9GaG5GW29GXW8vJSZhbGlnbkdRJWF4aXNGJy9GaW5RKWJhc2VsaW5lRicvRlxvUSdjZW50ZXJGJy9GXm9RJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0Y7LyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGZnAvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGYXEvJSZmcmFtZUdGYXEvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y4LyUtZXF1YWxjb2x1bW5zR0Y4LyUtZGlzcGxheXN0eWxlR0Y4LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRl5xRi8vSSttc2VtYW50aWNzR0YkUSdWZWN0b3JGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zkci8lK2FjdGlvbnR5cGVHUS5ydGFibGVhZGRyZXNzRicvJSlydGFibGVpZEdRKjI0OTYwOTIyNEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y4Ri8= LUklbXJvd0c2Iy9JK21vZHVsZW5hbWVHNiJJLFR5cGVzZXR0aW5nR0koX3N5c2xpYkdGJzYoLUkjbXNHRiQ2I1Eqc29sdXRpb249RictSSNtb0dGJDYtUSIsRicvJSxtYXRodmFyaWFudEdRJ25vcm1hbEYnLyUmZmVuY2VHUSZmYWxzZUYnLyUqc2VwYXJhdG9yR1EldHJ1ZUYnLyUpc3RyZXRjaHlHRjgvJSpzeW1tZXRyaWNHRjgvJShsYXJnZW9wR0Y4LyUubW92YWJsZWxpbWl0c0dGOC8lJ2FjY2VudEdGOC8lJ2xzcGFjZUdRJjAuMGVtRicvJSdyc3BhY2VHUSwwLjMzMzMzMzNlbUYnLUkobWFjdGlvbkdGJDYlLUkobWZlbmNlZEdGJDYoLUknbXRhYmxlR0YkNjUtSSRtdHJHRiQ2Jy1JJG10ZEdGJDYoLUkjbW5HRiQ2JFEsMi4xMjA2NzY4NDVGJ0YzLyUpcm93YWxpZ25HUSFGJy8lLGNvbHVtbmFsaWduR0Zbby8lK2dyb3VwYWxpZ25HRltvLyUocm93c3BhbkdRIjFGJy8lK2NvbHVtbnNwYW5HRmJvLUZZNigtRmZuNiRRLTAuNzA1MTczOTM1NkYnRjNGaW5GXG9GXm9GYG9GY29GaW5GXG9GXm8vJSZhbGlnbkdRJWF4aXNGJy9Gam5RKWJhc2VsaW5lRicvRl1vUSdjZW50ZXJGJy9GX29RJ3xmcmxlZnR8aHJGJy8lL2FsaWdubWVudHNjb3BlR0Y7LyUsY29sdW1ud2lkdGhHUSVhdXRvRicvJSZ3aWR0aEdGZ3AvJStyb3dzcGFjaW5nR1EmMS4wZXhGJy8lLmNvbHVtbnNwYWNpbmdHUSYwLjhlbUYnLyUpcm93bGluZXNHUSVub25lRicvJSxjb2x1bW5saW5lc0dGYnEvJSZmcmFtZUdGYnEvJS1mcmFtZXNwYWNpbmdHUSwwLjRlbX4wLjVleEYnLyUqZXF1YWxyb3dzR0Y4LyUtZXF1YWxjb2x1bW5zR0Y4LyUtZGlzcGxheXN0eWxlR0Y4LyUlc2lkZUdRJnJpZ2h0RicvJTBtaW5sYWJlbHNwYWNpbmdHRl9xRjMvSSttc2VtYW50aWNzR0YkUSdWZWN0b3JGJy8lJW9wZW5HUSJbRicvJSZjbG9zZUdRIl1GJ0Zlci8lK2FjdGlvbnR5cGVHUS5ydGFibGVhZGRyZXNzRicvJSlydGFibGVpZEdRKjI0OTYxMTY2OEYnLyUrZm9yZWdyb3VuZEdRKFswLDAsMF1GJy8lKXJlYWRvbmx5R0Y4RjM= NiRRLGl0ZXJhdGlvbnM9NiIiIiQ=
JSFH TTdSMApJNlJUQUJMRV9TQVZFLzI2MTI0OTM2MFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCUjZjFHJSNmMkclI2YzR0YmTTdSMApJNlJUQUJMRV9TQVZFLzI2MTI1MjAzMlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiIiIhIiJGJyRGKUYpRiY=TTdSMApJNlJUQUJMRV9TQVZFLzI2MTM0NjMzMlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKzVucCkqXCEjNSQiK29db1k+ISM2JCErO1o/Ol9GKUYmTTdSMApJNlJUQUJMRV9TQVZFLzI2MTQ0MTk4NFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKyVSVSwrJiEjNSQiKiE9ZillIiEjNiQhK10ncGJCJkYpRiY=TTdSMApJNlJUQUJMRV9TQVZFLzI2MTU0MDkyNFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiK0w2KytdISM1JCIpN1tXNyEjNyQhKy5YKWZCJkYpRiY=TTdSMApJNlJUQUJMRV9TQVZFLzI2MTY0MTg0OFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKysrKytdISM1JCImXDgpISM5JCErYXgpZkImRilGJg==TTdSMApJNlJUQUJMRV9TQVZFLzI2MTczODE5MlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKysrKytdISM1JCIpQidwJSoqISM+JCErYXgpZkImRilGJg==TTdSMApJNlJUQUJMRV9TQVZFLzI0OTY0NTc2NFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiIiIhIiJGJyRGKUYpRiY=TTdSMApJNlJUQUJMRV9TQVZFLzI0OTgyNTQ4NFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKzVucCkqXCEjNSQiK29db1k+ISM2JCErO1o/Ol9GKUYmTTdSMApJNlJUQUJMRV9TQVZFLzI0OTk0NTY3MlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKytDOStdISM1JCIqJT1mKWUiISM2JCErXSdwYkImRilGJg==TTdSMApJNlJUQUJMRV9TQVZFLzI1MDA2MzQ0MFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiK042KytdISM1JCIpR1tXNyEjNyQhKy5YKWZCJkYpRiY=TTdSMApJNlJUQUJMRV9TQVZFLzI1MDE4NjE2MFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKy0rKytdISM1JCImPkgpISM5JCErYXgpZkImRilGJg==TTdSMApJNlJUQUJMRV9TQVZFLzI1MDI5ODA3NlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKyoqKioqKioqXCEjNSQiKVdIVl0hIz4kIStheClmQiZGKUYmTTdSMApJNlJUQUJMRV9TQVZFLzI0OTU0MDE2NFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCUjZjFHJSNmMkclI2YzRzYiTTdSMApJNlJUQUJMRV9TQVZFLzI0OTU0MTU5NlgsJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIyoiJCIkZio2IyclInhHJSZBcnJheUc2IjYkJSlvcGVyYXRvckclJmFycm93R0YsIiIkRixGLEYsZipGKEYsRi1GLCwkJjkkNiMiIiIiIiNGLEYsRixmKkYoRixGLUYsLCQqJiZGNDYjRjdGNi0lJGV4cEc2IywkKiZGM0Y2RjtGNiEiIkY2RkJGLEYsRixmKkYoRixGLUYsKiYmRjQ2I0YwRjYtJSRzaW5HNiMqJkY7RjZGRUY2RjZGLEYsRixmKkYoRixGLUYsLCZGOyEkaSIkRjZGQkZNRixGLEYsZipGKEYsRi1GLCwkKiZGM0Y2Rj1GNkZCRixGLEYsZipGKEYsRi1GLComRjtGNkZHRjZGLEYsRixmKkYoRixGLUYsLSUkY29zRzYjRkVGLEYsRixmKkYoRixGLUYsIiM/RixGLEYsRiw=TTdSMApJNlJUQUJMRV9TQVZFLzI0OTU1MTQ2OFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiIiIhIiJGJyRGKUYpNiI=TTdSMApJNlJUQUJMRV9TQVZFLzI0OTU1MjQ2MFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiIiIhIiJGJyRGKUYpNiI=TTdSMApJNlJUQUJMRV9TQVZFLzI0OTU1NjE0MFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiK0lucCkqXCEjNSQiK2Jbb1k+ISM2JCErPlo/Ol9GKTYiTTdSMApJNlJUQUJMRV9TQVZFLzI0OTU1ODg1MlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKy1DOStdISM1JCIqSSJmKWUiISM2JCErVydwYkImRik2Ig==TTdSMApJNlJUQUJMRV9TQVZFLzI0OTU2MTUxMlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiK0w2KytdISM1JCIpIXlXQyIhIzckISsrWClmQiZGKTYiTTdSMApJNlJUQUJMRV9TQVZFLzI0OTU2NTMyNFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKysrKytdISM1JCImemEoISM5JCErY3gpZkImRik2Ig==TTdSMApJNlJUQUJMRV9TQVZFLzI0OTU2ODkzMlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKysrKytdISM1JCEqQi5gKFshIz4kIStjeClmQiZGKTYiTTdSMApJNlJUQUJMRV9TQVZFLzI0OTU3MDg1NlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKysrKytdISM1JCIra3F6MDghIz8kIStjeClmQiZGKTYiTTdSMApJNlJUQUJMRV9TQVZFLzI0OTU3NDUwOFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiQiJCQiKysrKytdISM1JCIra3F6MDghIz8kIStjeClmQiZGKTYiTTdSMApJNlJUQUJMRV9TQVZFLzI0OTU3NzcwOFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiMiIyUjZjFHJSNmMkc2Ig==TTdSMApJNlJUQUJMRV9TQVZFLzI0OTU3OTQ2OFgsJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIyUiIyIjJSRqMTFHJSRqMjFHJSRqMTJHJSRqMjJHNiI=TTdSMApJNlJUQUJMRV9TQVZFLzI0OTU4NDg5MlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiMiIyQhIz8hIiIkISM1Rik2Ig==TTdSMApJNlJUQUJMRV9TQVZFLzI0OTU4ODA2MFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiMiIyQhKyMpemk9RyEiKiQhK2xmRFBARik2Ig==TTdSMApJNlJUQUJMRV9TQVZFLzI0OTU4OTg5MlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiMiIyQhKz9CcDJGISIqJCErciplXiU9Rik2Ig==TTdSMApJNlJUQUJMRV9TQVZFLzI0OTU5NDg1MlgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiMiIyQhK3QtUzdGISIqJCErQ0NHSz1GKTYiTTdSMApJNlJUQUJMRV9TQVZFLzI0OTU5NzM0MFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiMiIyQhK1IkNENyIyEiKiQhK1ttREs9Rik2Ig==TTdSMApJNlJUQUJMRV9TQVZFLzI0OTU5OTc0OFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiMiIyQhK1IkNENyIyEiKiQhK1ttREs9Rik2Ig==TTdSMApJNlJUQUJMRV9TQVZFLzI0OTYwMjU2NFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiMiIyQiJDQjISIjJCIja0YpNiI=TTdSMApJNlJUQUJMRV9TQVZFLzI0OTYwNDc2NFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiMiIyQiKzU0RT9AISIqJCIrMCIqKVIxKCEjNTYiTTdSMApJNlJUQUJMRV9TQVZFLzI0OTYwOTIyNFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiMiIyQiK1xtbj9AISIqJCIrd0d1XnEhIzU2Ig==TTdSMApJNlJUQUJMRV9TQVZFLzI0OTYxMTY2OFgqJSlhbnl0aGluZ0c2IjYiW2dsISElISEhIiMiIyQiK1hvbj9AISIqJCIrYyRSPDAoISM1NiI=