Graphing Cube Root FunctionsFor use with Exploration 10.2

Essential Question What are some of the characteristics of the graph of a cube root function?

EXPLORATION: Graphing Cube Root Functions

Work with a partner.

- Make a table of values for each function. Use positive and negative values of x.
- Use the table to sketch the graph of each function.
- Describe the domain of each function.
- Describe the range of each function.

a.
$$y = \sqrt[3]{x}$$

b.
$$y = \sqrt[3]{x+3}$$

Graphing Cube Root Functions (continued)

EXPLORATION: Writing Cube Root Functions

Work with a partner. Write a cube root function, y = f(x), that has the given values. Then use the function to complete the table.

a.

X	f(x)
-4	0
-3	
-2	
-1	3√3
0	

X	f(x)
1	
2	
3	
4	2
5	

b.

X	f(x)
-4	1
-3	
-2	
-1	$1 + \sqrt[3]{3}$
0	

f(x)	
3	

Communicate Your Answer

- **3.** What are some of the characteristics of the graph of a cube root function?
- **4.** Graph each function. Then compare the graph to the graph of $f(x) = \sqrt[3]{x}$.

a.
$$g(x) = \sqrt[3]{x-1}$$

b.
$$g(x) = \sqrt[3]{x} - 1$$

$$g(x) = 2\sqrt[3]{x}$$

Name _____ Date ____

10.2 Notetaking with Vocabulary For use after Lesson 10.2

In your own words, write the meaning of each vocabulary term.

cube root function

Core Concepts

Cube Root Functions

A **cube root function** is a radical function with an index of 3. The parent function for the family of cube root functions is $f(x) = \sqrt[3]{x}$. The domain and range of f are all real numbers.

Notes:

10.2 Notetaking with Vocabulary (continued)

Extra Practice

In Exercises 1-6, graph the function. Compare the graph to the graph of $f(x) = \sqrt[3]{x}.$

1.
$$h(x) = \sqrt[3]{x-3}$$
 2. $g(x) = \sqrt[3]{x} + 2$ **3.** $j(x) = 4\sqrt[3]{x}$

2.
$$g(x) = \sqrt[3]{x} + 2$$

3.
$$j(x) = 4\sqrt[3]{x}$$

4.
$$r(x) = -\sqrt[3]{x-3}$$

5.
$$s(x) = 2\sqrt[3]{x} - 1$$

6.
$$t(x) = \sqrt[3]{-6x} - 2$$

10.2 Notetaking with Vocabulary (continued)

In Exercises 7–9, describe the transformations from the graph of $f(x) = \sqrt[3]{x}$ to the graph of the given function. Then graph the given function.

7.
$$p(x) = \sqrt[3]{x-1} + 1$$

8.
$$q(x) = -4\sqrt[3]{x+2} + 3$$

7.
$$p(x) = \sqrt[3]{x-1} + 1$$
 8. $q(x) = -4\sqrt[3]{x+2} + 3$ **9.** $r(x) = \frac{1}{2}\sqrt[3]{x+1} + 4$

10. The graph of cube root function g is shown. Compare the average rate of change of g to the average rate of change of $h(x) = 2\sqrt[3]{x}$ over the interval x = 0 to x = 8.

11. The edge length s of a regular tetrahedron is approximately given by $s = \sqrt[3]{8.49V}$, where V is the volume of the tetrahedron. Use a graphing calculator to graph the function. Estimate the volume of a regular tetrahedron with an edge length of 24 inches.