Name:

Key

## Take Home Quiz # 4

All problems 2 pts except # 9 = 4pts.

Justify and show the means by which you arrive at your answers using equations, pictures, calculations, geometry, algebra steps, and/or technology. You will not receive full credit if your answer is not supported by work that is legible and organized.

Place a box around your final answer. It won't be graded if you do not do this!

 Make your answers and their presentation in a professional and easily understandable format ... make this your clearest and best work! Points will be deducted for disorganized, sloppy work.

## 11.4

1. The flight of a baseball can be modeled by the function  $h(x) = -.02x^2 + 2.4x + 3$ .

Where h = height of the ball and x = distance from home plate. Use the quadratic equation to find how long the ball travels before it hits the ground.

Let 
$$h(x)=0$$
  $0=-.02x^2+2.4x+3$   

$$x = \frac{-(2.4) \pm \sqrt{(24)^2-4(-02)(3)}}{Z(-.02)} = (21.237)$$

$$\approx 121.2 \pm 1$$

2. Two pipes are connected to the same tank. Working together, they can fill the tank in 2 hr. The larger pipe working alone can fill the tank in 3 hours less than the smaller one. How long would the smaller one take, working alone, to fill the tank?

Working alone, to fill the tank?

Let t = t: ne for Small hase  $\begin{aligned}
1 &= \left(\frac{1}{t} + \frac{1}{t-3}\right) \cdot 2 \\
to fill tank \\
to fill tank
\end{aligned}$   $\begin{aligned}
t &= \left(\frac{1}{t} + \frac{1}{t-3}\right) \cdot 2 \\
to fill tank
\end{aligned}$   $\begin{aligned}
t &= \left(\frac{2}{t} + \frac{2}{t-3}\right) \cdot t(t-3)
\end{aligned}$ 

Largehose rate =  $\frac{1}{t-3}$  Small hose rate =  $\frac{1}{t}$  t(t-3) = 2(t-3) + 2t $t = \frac{1}{t^2-3t} = 4t-6$ 

3. Find all real solutions.  $x^4 - 9x^2 + 20 = 0$ 

Let  $u=x^2$   $u^2-9u+z0=0$  (u-4)(u-5)=0 u=4 or u=5  $x^2=4$  or  $x^2=5$  $x=\pm 2$ ,  $\pm \sqrt{5}$ 





(-5, 713)

b. What is the vertex of the parabola?

- Given the function  $g(x) = x^2 + 2x = 6$ 
  - q(-1)=(-1)2+2(-1)-6=-7 Vertex:(-1,-7) Find the vertex of the parabola
  - X= -6 = -2 = -1 |X=1 Give the axis of symmetry
  - e. Find the x-intercepts of the parabola  $0 = x^2 + 2x (x^2 4(x^2 6))$ f. Find the y-intercept of the parabola
- 8. Sketch a graph of  $g(x) = x^2 + 2x 6$  on the grid to the right.



Give the domain and range of the function. Write your answers in interval notation.

(4) Complete the square to write the function in *vertex form*. Then Find the coordinates of the vertex and draw

$$f(x) = 3(x^2 - 6x) + 15$$

$$= 3(x^2 - 6x + 9 - 9) + 15$$

$$= 3(x^2 - 6x + 9) - 27 + 15$$

$$5(x) = 3(x - 3)^2 - 12$$



10. The flight of a baseball can be modeled by the function  $h(x) = -02x^2 + 2.4x + 3$ 

Where h = height of the ball and x = distance from home plate. Find the maximum height it reaches

Describe/show your process.

Max height is at Vertex
$$X = \frac{-b}{2a} = \frac{-2.4}{24.02} = 60 \text{ fe}$$

 $h(60) = -02(60)^2 + 24(60) + 3$ = (75 + 6)