

Chapter 12 Review

- 1. For $f(x) = x^2 3$ and g(x) = x 5, find:
 - a. $(f \circ g)(2)$
- b. $(g \circ f)(2)$
 - c. $(f \circ g)(x)$

d. $(g \circ f)(x)$

2. Do the following functions have inverses? Explain.

- 3. Find the inverse of each of the following, if it exists
 - a. $f(x) = \frac{1}{3}x + 4$ b. $f(x) = x^2 6$ c. $f(x) = 2x^3 1$

- 4. Evaluate:

- a. $\log_4 16$ b. $\log_b b$ c. $\log_a 1$ d. $\log_8 8^{159}$

5. Rewrite in exponential form:

a.
$$\log_x 3 = m$$

b.
$$\ln p = q$$

6. Rewrite in logarithmic form:

a.
$$3^4 = 81$$

b.
$$m^n = r$$

7. Use a calculator to approximate the following. Round to the nearest thousandth.

a.
$$\log_2 40$$

b.
$$\log_{1/3} 8$$

8. Graph each of the following, and give the domain and range.

a.
$$2^{3x} = 16$$

b.
$$3^x = 15$$

b.
$$3^x = 15$$
 c. $5e^x + 3 = 7$

d.
$$\log_{x} 10 = 3$$

e.
$$4 \ln x = 20$$

d.
$$\log_x 10 = 3$$
 e. $4 \ln x = 20$ f. $\log(2x - 6) = 2$

- 10. A laptop computer is purchased for \$1500. Its value each year is about 60% of its value in the preceding year. Its value in dollars after t years is given by the function $V(t) = 1500(0.6)^t$.
 - a. What is its value after 5 years?

b. After what amount of time will the laptop's value be half the original value?

- 11. U.S. companies spent \$1.2 billion in e-mail marketing in 2007. This amount was predicted to grow exponentially to \$2.1 billion in 2012.
 - a. Find the exponential growth rate, k, and write a function of the form $P(t) = P_0 e^{kt}$ that describes the amount (in billions of dollars) , spent on marketing t years after 2007.
 - b. Estimate the amount spent on e-mail marketing in 2014.
 - c. In what year will U.S. companies spend \$4 billion on e-mail marketing?
 - d. Find the doubling time.
- 12. The number of hepatitis A cases in the U.S. has decreased exponentially since 1995. The number of cases for various years are listed in the table below.
 - a. Use regression to find an exponential function of the form $f(x) = ab^x$ that can be used to estimate the number of hepatitis A cases x years after 1995.
 - b. Use the function from part (a) to estimate the number of cases of hepatitis A in 2010.

Year	Cases in Hepatitis A (in thousands)
1995	31.6
2000	13.4
2003	7.7
2004	5.7
2005	4.5
2006	3.6
2007	3.0

c. When will the number of cases decrease to 1 thousand?

<u>Answers</u>

c.
$$x^2 - 10x + 22$$

d.
$$x^2 - 8$$

6

b.

3. a.
$$f^{-1}(x) = 3x - 12$$

c.
$$f^{-1}(x) = \sqrt[3]{\frac{x+1}{2}}$$

5. a.
$$x^m = 3$$

b.
$$e^q = p$$

6. a.
$$\log_3 81 = 4$$

b.
$$\log_m r = n$$

1

domain:
$$(0, \infty)$$

domain:
$$(5, \infty)$$

range:
$$(3, \infty)$$

range:
$$(-\infty, \infty)$$

range:
$$(-\infty, \infty)$$

9. a.
$$x = \frac{4}{3}$$

b.
$$x = \frac{\ln 15}{\ln 3}$$

$$x = \ln(4/5)$$

d.
$$x = \sqrt[3]{10}$$

$$x = e^5$$

f.
$$x = 53$$

11. a.
$$P(t) = 1.2e^{0.112t}$$

11. d.
$$I(l) - 1.2e$$

12. a.
$$f(x) = 33.8684(0.8196)^x$$