
Chapter 10 Review

Algebra

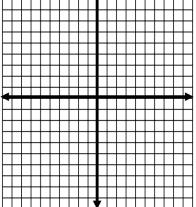
1. For
$$f(x) = x^2 - 3$$
 and $g(x) = x - 5$, find:
a. $(f \circ g)(2)$ b. $(g \circ f)(2)$ c. $(f \circ g)(x)$

d.
$$(g \circ f)(x)$$

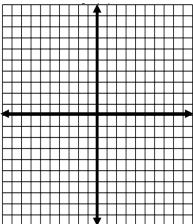
2. Do the following functions have inverses? Explain.

3. Find the inverse of each of the following, if it exists

a.
$$f(x) = \frac{1}{3}x + 4$$
 b. $f(x) = x^2 - 6$ c. $f(x) = 2x^3 - 1$


4. Evaluate:

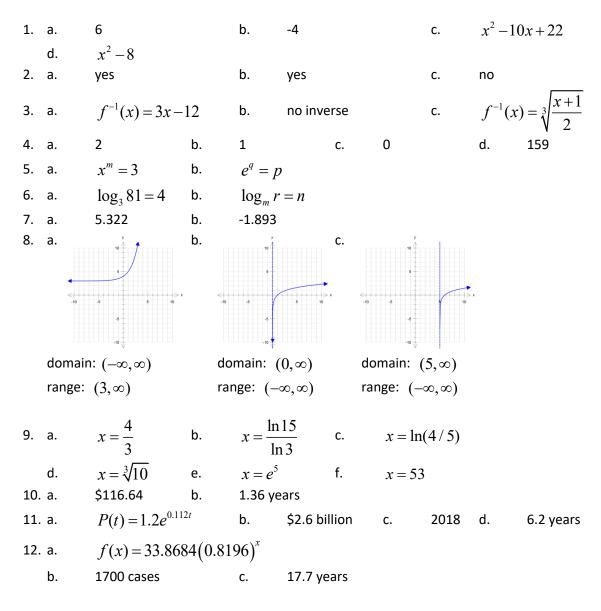
a.	$\log_4 16$	b.	$\log_b b$	с.	$\log_a 1$	d.	$\log_8 8^{159}$


- 5. Rewrite in exponential form:
 - a. $\log_x 3 = m$ b. $\ln p = q$
- 6. Rewrite in logarithmic form:
 - a. $3^4 = 81$ b. $m^n = r$

- 7. Use a calculator to approximate the following. Round to the nearest thousandth.
 - a. $\log_2 40$ b. $\log_{1/3} 8$
- 8. Graph each of the following, and give the domain and range.

a.
$$f(x) = 2^x + 3$$
 b. $y = \ln x$ c. $y = \log_3(x-5)$

- 9. Solve:
 - a. $2^{3x} = 16$ b. $3^{x} = 15$ c. $5e^{x} + 3 = 7$ d. $\log_{x} 10 = 3$ e. $4\ln x = 20$ f. $\log(2x - 6) = 2$


- 10. A laptop computer is purchased for \$1500. Its value each year is about 60% of its value in the preceding year. Its value in dollars after *t* years is given by the function $V(t) = 1500(0.6)^{t}$.
 - a. What is its value after 5 years?

b. After what amount of time will the laptop's value be half the original value?

- 11. U.S. companies spent \$1.2 billion in e-mail marketing in 2007. This amount was predicted to grow exponentially to \$2.1 billion in 2012.
 - a. Find the exponential growth rate, *k*, and write a function of the form $P(t) = P_0 e^{kt}$ that describes the amount (in billions of dollars), spent on marketing *t* years after 2007.

- b. Estimate the amount spent on e-mail marketing in 2014.
- c. In what year will U.S. companies spend \$4 billion on e-mail marketing?
- d. Find the doubling time.
- 12. The number of hepatitis A cases in the U.S. has decreased exponentially since 1995. The number of cases for various years are listed in the table below.
 - a. Use regression to find an exponential function of the form $f(x) = ab^x$ that can be used to estimate the number of hepatitis A cases x years after 1995.
- Year Cases in Hepatitis A (in thousands) 1995 31.6 2000 13.4 2003 7.7 2004 5.7 4.5 2005 3.6 2006 2007 3.0
- b. Use the function from part (a) to estimate the number of cases of hepatitis A in 2010.
- c. When will the number of cases decrease to 1 thousand?

<u>Answers</u>

