Algebra

Math 95 Regression Project

Finding a Regression Model

When analyzing data, we can use technology to find a function that closely approximates the collected values. This process of going from specific points to an equation is called **regression**. On the next page are the steps for using a TI-83 or TI-84 calculator to create a scatterplot and find a *regression equation* for a set of data.

Steps for finding a regression equation:

Enter Data:

- 1. Go to $\boxed{\text{STAT}}$ and select $\boxed{1}$ to go to EDIT.
- 2. Enter the x-values into L_1 and enter the y-values into L_2 .

Creating a scatterplot:

- 3. Now we need to graph these values in a scatterplot with the following steps.
- 4. Press Ind Y= to get the STAT PLOT menu.
- 5. Choose option $\boxed{1}$ to get Plot 1
- 6. Select [On] to turn the plot on.
- 7. Choose the scatterplot option.
- 8. Since we used the lists L_1 and L_2 , we do not need to change the Xlist or Ylist. If we did use a different list, we would need to change these.
- 9. To view the graph, hit the *zoom* button and choose ZoomStat which is option 9.

Finding a regression equation:

10. Now if we want find a linear regression, press and choose CALC.

- 11. Choose the type of regression you want. For now, we will use LinReg and QuadReg for linear and quadratic regression.
- 12. This will send you back to the homescreen. You now just need to hit enter to get your equation.
- 13. (optional) If you want to store the equation in the equation editor, do this before pressing enter: Type a left-parenthesis, go to [Vars]→[Y-Vars] and select [Y1], type a right –parenthesis, then hit enter. Hit the y= button to see your equation stored.

Regression using Desmos.com

Make a table and enter data

1. Use the statistics approximation function ~ to type the general regression forms (don't forget the subscript "1" after the variables): Linear: $y_1 \sim mx_1 + b$

Quadratic: $y_1 \sim ax_1^2 + bx_1 + c$ Exponential: $y_1 \sim a(b^{x_1}) + c$ Logarithmic: $y_1 \sim a \ln(x_1 + c)$

2. To extrapolate another value using this function, write the function with a number in place of *x*. If *x* = 25, type Linear: *m*(25) + *b* Quadratic: *a*(25)² + *b*(25) + *c* Then compute a specific value like *f*(25)

Modeling Data

We often want to model real-world data with a function to predict future values. We will now see how we can create exponential or logarithmic curves to fit given data. When we start from data and find a function, this is called a **regression function**.

<u>*Problem 1:*</u> The data for the world population is shown below. Use your graphing calculator to find the given regression functions and use them to make a prediction for the population in 2018

Year		1950	1960	1970	1980	1990	2000	2006
Number of years from 1949	х	1	11	21	31	41	51	57
World Population (in Billions)	у	2.6	3.0	3.7	4.5	5.3	6.1	6.5

	Linear	Quadratic	Exponential
Regression			
Equation			
2018			
Prediction			

Which Model is a better fit?

		0	0	1 7		
Year		2002	2003	2004	2005	2006
Number of years	х	1	2	3	4	5
after 2001						
Number of weight	у	63	103	141	171	178
loss surgeries (in						
thousands)						

<u>Problem 2</u>: The data for the number of weight loss surgeries per year.

a) Find a logarithmic regression model to fit the data.

b) Predict how many surgeries will be performed in 2020