

Name: Date:

3E Exercises

L'Hôpital's Rule

Answer the following questions using the L'Hôpital's Rule

11.
$$\lim_{x \to 3} \frac{x^2 - 2x - 3}{x - 3}$$

13.
$$\lim_{x\to 0} \frac{\sqrt{25-x^2}-5}{x}$$

15.
$$\lim_{x \to 0} \frac{e^x - (1 - x)}{x}$$

16.
$$\lim_{x \to 1} \frac{\ln x^2}{x^2 - 1}$$

21.
$$\lim_{x \to 0} \frac{\sin 3x}{\sin 5x}$$

$$23. \lim_{x \to 0} \frac{\arcsin x}{x}$$

30.
$$\lim_{x \to \infty} \frac{x^3}{e^{x^2}}$$

51.
$$\lim_{x \to \infty} x^{1/x}$$
 (hint: set equal to y and take log)

59.
$$\lim_{x \to 2^+} \left(\frac{8}{x^2 - 4} - \frac{x}{x - 2} \right)$$
 (hint: Simplify expression)

CAPSTONE

88. Determine which of the following limits can be evaluated using L'Hôpital's Rule. Explain your reasoning. Do not evaluate the limit.

evaluate the limit.

(a)
$$\lim_{x \to 2} \frac{x - 2}{x^3 - x - 6}$$

(b) $\lim_{x \to 0} \frac{x^2 - 4x}{2x - 1}$

(c) $\lim_{x \to \infty} \frac{x^3}{e^x}$

(d) $\lim_{x \to 3} \frac{e^{x^2} - e^9}{x - 3}$

(b)
$$\lim_{x \to 0} \frac{x^2 - 4x}{2x - 1}$$

(c)
$$\lim_{x \to \infty} \frac{x^3}{e^x}$$

(d)
$$\lim_{x \to 3} \frac{e^{x^2} - e}{x - 3}$$

(e)
$$\lim_{x \to 1} \frac{\cos \pi x}{\ln x}$$

(f)
$$\lim_{x \to 1} \frac{1 + x(\ln x - 1)}{\ln x(x - 1)}$$