

Now that we have defined a definite integral using limits and summation, you're probably wishing there was an easier way to find an integral, and there is... it's called the anti-derivative. We will see the connection between the summations and the antiderivative when we discuss the Fundamental Theorem of

Exploration

Calculus later.

For each derivative, describe the original function *F*.

a. F'(x) = 2xb. F'(x) = x

c.
$$F'(x) = x^2$$
 d. $F'(x) = \frac{1}{x^2}$

e.
$$F'(x) = \frac{1}{x^3}$$
 f. $F'(x) = \cos x$

Antiderivatives

Definition of Antiderivative

A function *F* is an **antiderivative** of *f* on an interval *I* if F'(x) = f(x) for all *x* in *I*

Example: What is the antiderivative of $f(x) = 3x^2$?

Now, notice that all these functions all have the property that $F'(x) = 3x^2$

$$F(x) = x^3$$
, $F(x) = x^3 + 1$, $F(x) = x^3 + \pi$, $F(x) = x^3 - 237.5e^{43}$

So, it is possible that the real function has some constant attached to it. We call this the **Constant of Integration.** So, we have to call this unknown value *C* and we say that

the antiderivative of
$$f(x) = 3x^2$$
 is $F(x) = x^3 + C$

So, if you know your derivatives well, you can find Antiderivatives by thinking backwards.

Indefinite Integral

An equation with a differential in it is called a **differential equation** that compares *dy* and *dx*.

So, we can come up with some notation by solving this differential equation:

$$\frac{dy}{dx} = f(x) \rightarrow dy = f(x) dx$$

To solve for *y*, we need to do the opposite of differentiation, so we need to find the *andtiderivative*.

$$y = \int f(x) \, dx = F(x) + C$$

This is what we call an *indefinite integral.* Now we see that integration (the process of finding the indefinite integral) is the *inverse* of differentiation. So, we can say

$$\frac{d}{dx}\left(\int f(x)\,dx\,\right) = f(x)$$

Let's find some more integrals

Examples Find these antiderivatives.

a.
$$\int x^3 dx$$

b.
$$\int 5 dx$$

c.
$$\int x^3 + x^2 dx$$

BASIC INTEGRATION RULES

Differentiation FormulaIntegration Formula
$$\frac{d}{dx}[C] = 0$$
 $\int 0 \, dx = C$ $\frac{d}{dx}[kx] = k$ $\int k \, dx = kx + C$ $\frac{d}{dx}[kf(x)] = kf'(x)$ $\int kf(x) \, dx = k \int f(x) \, dx$ $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$ $\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$ $\frac{d}{dx}[x^n] = nx^{n-1}$ $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$ $\frac{d}{dx}[\sin x] = \cos x$ $\int \cos x \, dx = \sin x + C$ $\frac{d}{dx}[\cos x] = -\sin x$ $\int \sin x \, dx = -\cos x + C$ $\frac{d}{dx}[\tan x] = \sec^2 x$ $\int \sec^2 x \, dx = \tan x + C$ $\frac{d}{dx}[\cot x] = -\csc^2 x$ $\int \sec^2 x \, dx = -\cot x + C$ $\frac{d}{dx}[\cot x] = -\csc^2 x$ $\int \csc^2 x \, dx = -\cot x + C$ $\frac{d}{dx}[\cot x] = -\csc x \cot x$ $\int \csc x \cot x \, dx = -\csc x + C$

Example Use the properties of antiderivatives to find the integrals.

 $\int 3x^2 dx$ $\int \frac{1}{x^3} dx$

$$\int \sqrt{x} \, dx$$

 $\int 3x^4 - 5x^2 + x \, dx$