

Unit 4 Toolkit: Integration

4A: Area Approximations (4.2)

Properties of Summations

Using the distributive and associative properties of addition, we can prove these important properties (k is a constant).

$$\sum_{i=1}^{n} k a_{i} = k \sum_{i=1}^{n} a_{i} \qquad and \qquad \sum_{i=1}^{n} (a_{i} + b_{i})$$

THEOREM 4.2 SUMMATION FORMULAS 1.
$$\sum_{i=1}^{n} c = cn$$
2. $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
3. $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
4. $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$

4B: Summation Notation and Area (4.3)

DEFINITION OF RIEMANN SUM

Let *f* be defined on the closed interval [a, b], and let Δ be a partition of [a, b] given by

$$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = k$$

where Δx_i is the width of the *i*th subinterval. If c_i is *any* point in the *i*th subinterval $[x_{i-1}, x_i]$, then the sum

$$\sum_{i=1}^n f(c_i) \Delta x_i, \quad x_{i-1} \leq c_i \leq x_i$$

is called a **Riemann sum** of f for the partition Δ .

Limit Definition of a Definite Integral

For a continuous function
$$f(x)$$
, to calculate

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_{i}) \Delta x$$

where $\Delta x = \frac{b-a}{n}$ and $c_{i} = a + i\Delta x$.

THEOREM 4.4 CONTINUITY IMPLIES INTEGRABILITY

If a function *f* is continuous on the closed interval [*a*, *b*], then *f* is integrable on [*a*, *b*]. That is, $\int_a^b f(x) dx$ exists.

DEFINITIONS OF TWO SPECIAL DEFINITE INTEGRALS

1. If *f* is defined at x = a, then we define $\int_{a}^{a} f(x) dx = 0$. 2. If *f* is integrable on [*a*, *b*], then we define $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$.

THEOREM 4.7 PROPERTIES OF DEFINITE INTEGRALS

If *f* and *g* are integrable on [*a*, *b*] and *k* is a constant, then the functions *kf* and $f \pm g$ are integrable on [*a*, *b*], and 1. $\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$ 2. $\int_{a}^{b} [f(x) \pm g(x)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$.

4C: Antiderivatives and Indefinite Integrals (4.1)

Definition of Antiderivative

A function *F* is an **antiderivative** of *f* on an interval *I* if F'(x) = f(x) for all *x* in *I*

BASIC INTEGRATION RULES

Differentiation FormulaIntegration Formula
$$\frac{d}{dx}[C] = 0$$
 $\int 0 \, dx = C$ $\frac{d}{dx}[kx] = k$ $\int k \, dx = kx + C$ $\frac{d}{dx}[kf(x)] = kf'(x)$ $\int kf(x) \, dx = k \int f(x) \, dx$ $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$ $\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx$ $\frac{d}{dx}[x^n] = nx^{n-1}$ $\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, \quad n \neq -1$ $\frac{d}{dx}[\sin x] = \cos x$ $\int \cos x \, dx = \sin x + C$ $\frac{d}{dx}[\cos x] = -\sin x$ $\int \sin x \, dx = -\cos x + C$ $\frac{d}{dx}[\tan x] = \sec^2 x$ $\int \sec^2 x \, dx = \tan x + C$ $\frac{d}{dx}[\cot x] = -\csc^2 x$ $\int \sec^2 x \, dx = -\cot x + C$ $\frac{d}{dx}[\cot x] = -\csc^2 x$ $\int \csc^2 x \, dx = -\cot x + C$ $\frac{d}{dx}[\cot x] = -\csc x \cot x$ $\int \csc x \cot x \, dx = -\csc x + C$

Ordinary Differential Equation: $\frac{dy}{dx} = f(x, y)$

- A **General Solution** is found by integrating both sides. The resulting function will have a general constant, *c*.
- A Particular Solution is found by integrating, then applying *initial conditions*.

4D: The Fundamental Theorem of Calculus (4.4)

Average value
$$= \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

2nd Fundamental Theorem of Calculus (FTC2)

If *f* is continuous on an open interval *I*, then, for every *x* on the interval, $G(x) = \int_{a}^{x} f(t) dt$

Then

$$G'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$$

4E: Integration by Substitution (4.5)

Inside Function Derivative of Inside Function

If g is a differentiable function of x, then

$$\int [g(x)]^n g'(x) \, dx = \frac{[g(x)]^{n+1}}{n+1} + C, \quad n \neq -1.$$

Equivalently, if u = g(x), then

$$\int u^n \, du = \frac{u^{n+1}}{n+1} + C, \quad n \neq -1.$$

THEOREM 4.16 INTEGRATION OF EVEN AND ODD FUNCTIONS

Let *f* be integrable on the closed interval [-a, a].

1. If f is an even function, then
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$
.
2. If f is an odd function, then $\int_{-a}^{a} f(x) dx = 0$.