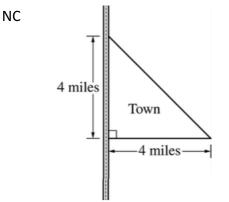


## **AP Calculus A/B Practice Test #2**

#### Multiple Choice (Goal: 2-3 min. each)

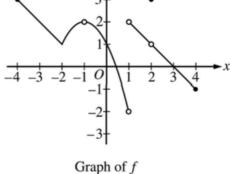
- NC 11. At time t, a population of bacteria grows at the rate of  $5e^{0.2t} + 4t$  grams per day, where t is measured in days. By how many grams has the population grown from time t = 0 days to t = 10 days?
  - (A)  $5e^2 + 40$
  - (B)  $5e^2 + 195$
  - (C)  $25e^2 + 175$
  - (D)  $25e^2 + 375$



12. The right triangle shown in the figure above represents the boundary of a town that is bordered by a highway. The population density of the town at a distance of x miles from the highway is modeled by  $D(x) = \sqrt{x+1}$ , where D(x) is measured in thousands of people per square mile. According to the model, which of the following expressions gives the total population, in thousands, of the town?

(A) 
$$\int_{0}^{4} \sqrt{x+1} dx$$
  
(B)  $\int_{0}^{4} 8\sqrt{x+1} dx$   
(C)  $\int_{0}^{4} x\sqrt{x+1} dx$   
(D)  $\int_{0}^{4} (4-x)\sqrt{x+1} dx$ 

NC 13. Which of the following is the solution to the differential equation  $\frac{dy}{dx} = y \sec^2 x$  with the initial condition  $y\left(\frac{\pi}{4}\right) = -1$ ? (A)  $y = -e^{\tan x}$ (B)  $y = -e^{(-1+\tan x)}$ (C)  $y = -e^{(\sec^3 x - 2\sqrt{2})/3}$ (D)  $y = -\sqrt{2 \tan x - 1}$ NC



- 14. The graph of the function f is shown in the figure above. For how many values of x in the open interval (-4, 4) is f discontinuous?
  - (A) one
  - (B) two
  - (C) three
  - (D) four

NC

| 15. | x     | 0  | 1  | 2   |
|-----|-------|----|----|-----|
|     | f(x)  | 5  | 2  | -7  |
|     | f'(x) | -2 | -5 | -14 |

The table above gives selected values of a differentiable and decreasing function f and its derivative. If g is the inverse function of f, what is the value of g'(2)?

(A)  $-\frac{1}{5}$ 

- (B)  $-\frac{1}{14}$
- (C)  $\frac{1}{5}$
- (D) 5

CR

16. The derivative of the function f is given by  $f'(x) = -\frac{x}{3} + \cos(x^2)$ . At what values of x does f have a relative minimum on the interval 0 < x < 3?

- (A) 1.094 and 2.608
- (B) 1.798
- (C) 2.372
- (D) 2.493

17. The second derivative of a function g is given by  $g''(x) = 2^{-x^2} + \cos x + x$ . For -5 < x < 5, CR on what open intervals is the graph of g concave up?

- (A) -5 < x < -1.016 only
- (B) -1.016 < x < 5 only
- (C) 0.463 < x < 2.100 only
- (D) -5 < x < 0.463 and 2.100 < x < 5

CR 18. The temperature, in degrees Fahrenheit ( $^{\circ}F$ ), of water in a pond is modeled by the function H given by  $H(t) = 55 - 9\cos\left(\frac{2\pi}{365}(t+10)\right)$ , where t is the number of days since January 1 (t = 0). What is the instantaneous rate of change of the temperature of the water at time t = 90 days?

- (A) 0.114°F/day
- (B) 0.153°F/day
- (C) 50.252°F/day
- (D) 56.350°F/day

CR

| 19. | x     | 0 | 2 | 4 | 8  |
|-----|-------|---|---|---|----|
|     | f(x)  | 3 | 4 | 9 | 13 |
|     | f'(x) | 0 | 1 | 1 | 2  |

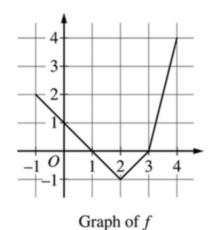
The table above gives values of a differentiable function f and its derivative at selected values of x. If h is the function given by h(x) = f(2x), which of the following statements must be true?

- (I) *h* is increasing on 2 < x < 4.
- (II) There exists c, where 0 < c < 4, such that h(c) = 12.
- (III) There exists c, where 0 < c < 2, such that h'(c) = 3.
- (A) II only
- (B) I and III only
- (C) II and III only
- (D) I, II, and III

CR 20. Let *h* be the function defined by  $h(x) = \frac{1}{\sqrt{x^5 + 1}}$ . If *g* is an antiderivative of *h* and g(2) = 3, what is the value of g(4)?

- **(A)** -0.020
- **(B)** 0.152
- (C) 3.031
- (D) 3.152

Free Response (Goal: 15 min. each) CR



3. Let *f* be a continuous function defined on the closed interval  $-1 \le x \le 4$ . The graph of *f*, consisting of three line segments, is shown above. Let *g* be the function defined by

$$g(x) = 5 + \int_{2}^{x} f(t) dt$$
 for  $-1 \le x \le 4$ .

- (A) Find g(4).
- (B) On what intervals is g increasing? Justify your answer.
- (C) On the closed interval  $-1 \le x \le 4$ , find the absolute minimum value of *g* and find the absolute maximum value of *g*. Justify your answers.
- (D) Let  $h(x) = x \cdot g(x)$ . Find h'(2).

- CRAn airplane takes off along a straight runway. For  $0 \le t \le 20$ , the plane's velocity is given by a4.differentiable function v. Selected values of v(t), where t is measured in seconds and v(t) is measured
  - in meters per second, are given in the table below.

| t (seconds)              | 0 | 4  | 10 | 15 | 19 | 19.9  | 19.99  | 19.999  | 19.9999 |
|--------------------------|---|----|----|----|----|-------|--------|---------|---------|
| v(t) (meters per second) | 0 | 50 | 75 | 87 | 93 | 94.85 | 94.985 | 94.9984 | 94.9997 |

- a) Use the data in the table to estimate the velocity of the airplane at takeoff, that is, estimate the value of  $\lim_{t\to 20^-} v(t)$ .
- b) Use the data in the table to estimate the value of  $\nu'(6)$ . Using correct units, interpret the meaning of the value in the context of the problem.
- c) Approximate the value of the definite integral  $\int_{0}^{15} v(t) dt$  using a right Riemann sum with three subintervals indicated in the table. Using correct units, explain the meaning of the definite integral  $\int_{0}^{15} v(t) dt$  in the context of the problem.
- d) Suppose the velocity of a second airplane can be modeled by  $f(t)=15.7 \cdot \ln(t^2+t+1)$  for  $0 \le t \le 20$ , seconds. Using this model, find the acceleration of the plane at the time it reaches a velocity of 58 meters/sec (the stall speed).

# **Answers and Rubrics (AB)**

### **Answers to Multiple-Choice Questions**

| 11 | C |
|----|---|
| 12 | D |
| 13 | В |
| 14 | С |
| 15 | А |
| 16 | С |
| 17 | В |
| 18 | В |
| 19 | С |
| 20 | D |
|    |   |

### **Rubrics for Free-Response Questions**

| 0  |      |     | - |
|----|------|-----|---|
| OI | lest | IOL |   |
|    |      |     |   |
|    |      |     |   |

|                                                            | Solutions                                                                                                         | Point Allocation                                                                                                                                              |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (A) $g(4) = 5$                                             | $+\int_{2}^{4} f(t) dt = 5 + \left(-\frac{1}{2}\right) + 2 = \frac{13}{2}$                                        | 1 : answer                                                                                                                                                    |
| $-1 \le x \le$                                             | (x)<br>on g is increasing on the intervals<br>1 and $3 \le x \le 4$ because $g' = f$ is<br>we on these intervals. | $2: \begin{cases} 1 : answer \\ 1 : justification \end{cases}$                                                                                                |
| (C) $g'(x) = f$                                            | $(x) = 0 \implies x = 1, x = 3$                                                                                   | 4: $\begin{cases} 1 : \text{ considers } g'(x) = 0\\ 1 : \text{ identifies } x = 1 \text{ and } x = 3 \text{ as candidates}\\ 1 : \text{ answer} \end{cases}$ |
| x                                                          | <i>g</i> ( <i>x</i> )                                                                                             | 1 : justification                                                                                                                                             |
| -1                                                         | $\frac{7}{2}$                                                                                                     |                                                                                                                                                               |
| 1                                                          | $\frac{11}{2}$                                                                                                    |                                                                                                                                                               |
| 3                                                          | $\frac{9}{2}$                                                                                                     |                                                                                                                                                               |
| 4                                                          | $\frac{13}{2}$                                                                                                    |                                                                                                                                                               |
| The absolute minimum value of g is $\frac{7}{2}$ , and the |                                                                                                                   |                                                                                                                                                               |
| absolute maximum value of g is $\frac{13}{2}$ .            |                                                                                                                   |                                                                                                                                                               |
|                                                            | $g(x) + x \cdot g'(x)$<br>$g(2) + 2 \cdot g'(2) = 1(5) + 2(-1) = 3$                                               | $2: \begin{cases} 1: h'(x) \\ 1: h'(2) \end{cases}$                                                                                                           |

#### 4.

a)  $\lim_{t\to 20^-} v(t) = 95$  meters / sec

b) 
$$\nu'(6) \approx \frac{\nu(10) - \nu(4)}{10 - 4} = \frac{75 - 50}{6} = 4.167 \text{ (or } 4.166\text{)}$$

The velocity of the plane is increasing at a rate of approximately 4.167 (or 4.166) meters / sec<sup>2</sup> at time t = 6 seconds.

c) 
$$\int_{0}^{15} v(t)dt \approx 4 \cdot v(4) + 6 \cdot v(10) + 5 \cdot v(15)$$
$$= 4 \cdot 50 + 6 \cdot 75 + 5 \cdot 87$$
$$= 1085 \text{ meters.}$$

 $\int_{0}^{15} v(t) dt$  is the total distance traveled by the airplane on the runway, in meters, over the time interval  $0 \le t \le 15$  seconds.

d)  $f(t) = 15.7 \cdot \ln(t^2 + t + 1) = 58 \implies t = 5.782205$ 

The airplane reaches a velocity of 58 meters / sec at time a = 5.782205 seconds.

The acceleration of the airplane at that time is f'(a) = 4.905 meters/sec<sup>2</sup>

1 : estimate

 $2: \begin{cases} 1: estimate \\ 1: interpretation with units \end{cases}$ 

3: 
$$\begin{cases} 1: \operatorname{sets} f(t) = 58\\ 1: \operatorname{uses} f'(t)\\ 1: \operatorname{answer} \end{cases}$$

From: AP Calculus Course and Exam Descriptions