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5 Logarithmic, Exponential, and
Other Transcendental Functions

In Section 5.1, you will see how the function can be used to define the natural logarithmic function. To do
this, consider the definite integral When the value of this definite integral is negative. When the
value is 0. When the value is positive.x > 1,

x ! 1,x < 1,!x
1  1"t dt.

f #x$ ! 1"x

dt = ln ≈ 0.41
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So far in this text, you have studied two
types of elementary functions—algebraic
functions and trigonometric functions. 
This chapter concludes the introduction 
of elementary functions. As each new type
is introduced, you will study its properties,
its derivative, and its antiderivative.

In this chapter, you should learn the 
following.

■ The properties of the natural logarithmic
function. How to find the derivative and
antiderivative of the natural logarithmic
function. (5.1, 5.2)

■ How to determine whether a function
has an inverse function. (5.3)

■ The properties of the natural exponential
function. How to find the derivative and
antiderivative of the natural exponential
function. (5.4)

■ The properties, derivatives, and antideriv-
atives of logarithmic and exponential
functions that have bases other than e.
(5.5)

■ The properties of inverse trigonometric 
functions. How to find derivatives and
antiderivatives of inverse trigonometric
functions. (5.6, 5.7)

■ The properties of hyperbolic functions.
How to find derivatives and antideriva-
tives of hyperbolic functions. (5.8)

The Gateway Arch in St. Louis, Missouri is over 600 feet high and covered with 
886 tons of quarter-inch stainless steel. A mathematical equation used to construct
the arch involves which function? (See Section 5.8, Section Project.)

■

■



■ Develop and use properties of the natural logarithmic function.
■ Understand the definition of the numbere.
■ Find derivatives of functions involving the natural logarithmic function.

The Natural Logarithmic Function
Recall that the General Power Rule

General Power Rule

has an important disclaimer—it doesn’t apply when Consequently, you have
not yet found an antiderivative for the function In this section, you will
use the Second Fundamental Theorem of Calculus to define such a function. This
antiderivative is a function that you have not encountered previously in the text. It is
neither algebraic nor trigonometric, but falls into a new class of functions called
logarithmic functions. This particular function is the natural logarithmic function.

From this definition, you can see that is positive for and negative for
as shown in Figure 5.1. Moreover, because the upper and lower

limits of integration are equal when 

If then If then 
Figure 5.1

ln x < 0.0 < x < 1,ln x > 0.x > 1,
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x ! 1.
ln#1$ ! 0,0 < x < 1,

x > 1ln x

f#x$ ! 1"x.
n ! "1.

n # "1%xn dx !
xn$1

n $ 1
$ C,
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5.1 The Natural Logarithmic Function: Differentiation

DEFINITION OF THE NATURAL LOGARITHMIC FUNCTION

The natural logarithmic function is defined by 

The domain of the natural logarithmic function is the set of all positive real
numbers.

x > 0.ln x ! %x

1

1
t

dt,

E X P L O R A T I O N

Graphing the Natural Logarithmic Function Using only the definition of
the natural logarithmic function, sketch a graph of the function. Explain your
reasoning.

JOHN NAPIER (1550–1617)

Logarithms were invented by the Scottish
mathematician John Napier. Napier coined the
term logarithm, from the two Greek words
logos (or ratio) and arithmos (or number), to
describe the theory that he spent 20 years
developing and that first appeared in the
book Mirifici Logarithmorum canonis descriptio
(A Description of the Marvelous Rule of
Logarithms). Although he did not introduce
the natural logarithmic function, it is some-
times called the Napierian logarithm.
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To sketch the graph of you can think of the natural logarithmic function
as an antiderivative given by the differential equation

Figure 5.2 is a computer-generated graph, called a slope (or direction) field, showing
small line segments of slope The graph of is the solution that passes
through the point You will study slope fields in Section 6.1.

The following theorem lists some basic properties of the natural logarithmic
function.

Using the definition of the natural logarithmic function, you can prove several
important properties involving operations with natural logarithms. If you are already
familiar with logarithms, you will recognize that these properties are characteristic of
all logarithms.

#1, 0$.
y ! ln x1"x.

dy
dx

!
1
x
.

y ! ln x,
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THEOREM 5.1 PROPERTIES OF THE NATURAL LOGARITHMIC FUNCTION

The natural logarithmic function has the following properties.

1. The domain is and the range is 

2. The function is continuous, increasing, and one-to-one.

3. The graph is concave downward.

#"%, %$.#0, %$

PROOF The domain of is by definition. Moreover, the function is
continuous because it is differentiable. It is increasing because its derivative

First derivative

is positive for as shown in Figure 5.3. It is concave downward because 

Second derivative

is negative for The proof that is one-to-one is given in Appendix A. The 
following limits imply that its range is the entire real line.

and

Verification of these two limits is given in Appendix A. ■

lim
x→%

 ln x ! %lim
x→0$

 ln x ! "%

fx > 0.

f&#x$ ! "
1
x2

x > 0,

f'#x$ !
1
x

#0, %$f #x$ ! ln x

THEOREM 5.2 LOGARITHMIC PROPERTIES

If and are positive numbers and is rational, then the following properties 
are true.

1.
2.
3.

4. ln&a
b' ! ln a " ln b

ln#an$ ! n ln a

ln#ab$ ! ln a $ ln b

ln#1$ ! 0

nba

x
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−2

−3

1

1

2 3 4 5

(1, 0)

y x= ln

y

Each small line segment has a slope of

Figure 5.2
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The natural logarithmic function is increasing,
and its graph is concave downward.
Figure 5.3



Example 1 shows how logarithmic properties can be used to expand logarithmic
expressions.

EXAMPLE 1 Expanding Logarithmic Expressions

a. Property 4

b. Rewrite with rational exponent.

Property 3

c. Property 4

Property 2

d.

■

When using the properties of logarithms to rewrite logarithmic functions, you must
check to see whether the domain of the rewritten function is the same as the domain of
the original. For instance, the domain of is all real numbers except 
and the domain of is all positive real numbers. (See Figure 5.4.)g#x$ ! 2 ln x

x ! 0,f#x$ ! ln x2

! 2 ln#x2 $ 3$ " ln x "
1
3

 ln#x2 $ 1$

! 2 ln#x2 $ 3$ " ln x " ln#x2 $ 1$1"3

! 2 ln#x2 $ 3$ " (ln x $ ln#x2 $ 1$1"3)

ln
#x2 $ 3$2

x 3*x2 $ 1
! ln#x2 $ 3$2 " ln#x 3*x2 $ 1 $

! ln 6 $ ln x " ln 5

 ln
6x
5

! ln#6x$ " ln 5

!
1
2

 ln#3x $ 2$

 ln*3x $ 2 ! ln#3x $ 2$1"2

ln
10
9

! ln 10 " ln 9
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PROOF The first property has already been discussed. The proof of the second 
property follows from the fact that two antiderivatives of the same function differ at
most by a constant. From the Second Fundamental Theorem of Calculus and the
definition of the natural logarithmic function, you know that

So, consider the two derivatives

and

Because and are both antiderivatives of they must differ at
most by a constant.

By letting you can see that The third property can be proved similarly
by comparing the derivatives of and Finally, using the second and third
properties, you can prove the fourth property.

■! ln a " ln b! ln a $ ln#b"1$ln&a
b' ! ln(a#b"1$)

n lnx.ln#xn$
C ! 0.x ! 1,

ln#ax$ ! ln a $ ln x $ C

1"x,#ln a $ ln x$ln#ax$

d
dx

(ln a $ ln x) ! 0 $
1
x

!
1
x
.

d
dx

(ln#ax$) !
a
ax

!
1
x

d
dx

(ln x) !
d
dx +%x

1

1
t

dt, !
1
x
.

5

−5

−5

5f (x) = ln x2

5

−5

−5

5 g(x) = 2 ln x

Figure 5.4



The Number e
It is likely that you have studied logarithms in an algebra course. There, without the
benefit of calculus, logarithms would have been defined in terms of a base number.
For example, common logarithms have a base of 10 and therefore (You
will learn more about this in Section 5.5.)

The base for the natural logarithm is defined using the fact that the natural
logarithmic function is continuous, is one-to-one, and has a range of So,
there must be a unique real number such that as shown in Figure 5.5. This
number is denoted by the letter It can be shown that is irrational and has the
following decimal approximation.

Once you know that you can use logarithmic properties to evaluate the
natural logarithms of several other numbers. For example, by using the property 

you can evaluate for various values of as shown in the table and in Figure 5.6.

The logarithms shown in the table above are convenient because the values are
integer powers of Most logarithmic expressions are, however, best evaluated with a
calculator.

EXAMPLE 2 Evaluating Natural Logarithmic Expressions

a.
b.
c. ■ln 0.1 - "2.303

ln 32 - 3.466

ln 2 - 0.693

e.
x-

n,ln#en$

! n

! n#1$
 ln#en$ ! n ln e

ln e ! 1,

ee.
ln x ! 1,x

#"%, %$.

log1010 ! 1.
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e

1∫

y

y = 1
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1
t

is the base for the natural logarithm
because
Figure 5.5

ln e ! 1.
e

x

1

−1

−2

−3

1

2

2 3 4 5 6 7 8

y = ln x

(e−3, −3)

(e−2, −2)

(e−1, −1)

(e0, 0)

(e2, 2)

(e, 1)

y

If then 
Figure 5.6

ln x ! n.x ! en,

e - 2.71828182846

DEFINITION OF e
The letter denotes the positive real number such that

ln e ! %e

1

1
t

dt ! 1.

e

■ FOR FURTHER INFORMATION To learn more about the number see the article
“Unexpected Occurrences of the Number ” by Harris S. Shultz and Bill Leonard in
Mathematics Magazine. To view this article, go to the website www.matharticles.com. ■

e
e,

x 1
e3 - 0.050

1
e2 - 0.135

1
e

- 0.368 e0 ! 1 e - 2.718 e2 - 7.389

ln x "3 "2 "1 0 1 2



The Derivative of the Natural Logarithmic Function
The derivative of the natural logarithmic function is given in Theorem 5.3. The first
part of the theorem follows from the definition of the natural logarithmic function as
an antiderivative. The second part of the theorem is simply the Chain Rule version of
the first part.

EXAMPLE 3 Differentiation of Logarithmic Functions

a.

b.

c. Product Rule

d. Chain Rule

■

Napier used logarithmic properties to simplify calculations involving products,
quotients, and powers. Of course, given the availability of calculators, there is now
little need for this particular application of logarithms. However, there is great value
in using logarithmic properties to simplify differentiation involving products,
quotients, and powers.

EXAMPLE 4 Logarithmic Properties as Aids to Differentiation

Differentiate 

Solution Because

Rewrite before differentiating.

you can write 

Differentiate. ■f'#x$ !
1
2 & 1

x $ 1' !
1

2#x $ 1$.

f#x$ ! ln*x $ 1 ! ln#x $ 1$1"2 !
1
2

ln #x $ 1$

f #x$ ! ln*x $ 1.

! 3#ln x$2 1
x

d
dx

(#ln x$3) ! 3#ln x$2 d
dx

(ln x)

! x&1
x' $ #ln x$#1$ ! 1 $ ln x

d
dx

(x ln x) ! x& d
dx

(ln x)' $ #ln x$& d
dx

(x)'
u ! x 2 $ 1

d
dx

(ln#x2 $ 1$) !
u'
u

!
2x

x2 $ 1

u ! 2x
d

dx
(ln #2x$) !

u'
u

!
2

2x
!

1
x
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THEOREM 5.3 DERIVATIVE OF THE NATURAL LOGARITHMIC FUNCTION

Let be a differentiable function of 

1. 2. u > 0
d

dx
(ln u) !

1
u

du
dx

!
u'
u

,x > 0
d
dx

(ln x) !
1
x

,

x.u

E X P L O R A T I O N

Use a graphing utility to graph

and

in the same viewing window, in
which and

Explain why the
graphs appear to be identical.
"2 ( y ( 8.

0.1 ( x ( 5

y2 !
d

dx
(ln x)

y1 !
1
x

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.



EXAMPLE 5 Logarithmic Properties as Aids to Differentiation

Differentiate 

Solution

Write original function.

Rewrite before differentiating.

Differentiate.

Simplify. ■

On occasion, it is convenient to use logarithms as aids in differentiating 
logarithmic functions. This procedure is called logarithmic differentiation.

EXAMPLE 6 Logarithmic Differentiation

Find the derivative of

Solution Note that for all So, is defined. Begin by taking the
natural logarithm of each side of the equation. Then apply logarithmic properties and
differentiate implicitly. Finally, solve for 

Write original equation.

Take natural log of each side.

Logarithmic properties

Differentiate.

Simplify.

Solve for 

Substitute for 

Simplify. ■!
#x " 2$#x2 $ 2x $ 2$

#x2 $ 1$3" 2

y.!
#x " 2$2

*x2 $ 1+
x2 $ 2x $ 2

#x " 2$#x2 $ 1$,
y'.y' ! y+ x2 $ 2x $ 2

#x " 2$#x2 $ 1$,
!

x2 $ 2x $ 2
#x " 2$#x2 $ 1$

y'
y

! 2& 1
x " 2' "

1
2& 2x

x2 $ 1'
 ln y ! 2 ln#x " 2$ "

1
2

 ln#x2 $ 1$

 ln y ! ln
#x " 2$2

*x2 $ 1

y !
#x " 2$2

*x2 $ 1
,  x # 2

y'.

ln yx # 2.y > 0

y !
#x " 2$2

*x2 $ 1
,  x # 2.

non

!
1
x

$
4x

x2 $ 1
"

3x2

2x3 " 1

f'#x$ !
1
x

$ 2& 2x
x2 $ 1' "

1
2 & 6x2

2x3 " 1'
! ln x $ 2 ln#x2 $ 1$ "

1
2

 ln#2x3 " 1$

f#x$ ! ln
x#x2 $ 1$2

*2x3 " 1

f#x$ ! ln
x#x2 $ 1$2

*2x3 " 1
.
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NOTE In Examples 4 and 5, be sure you see the benefit of applying logarithmic properties
differentiating. Consider, for instance, the difficulty of direct differentiation of the

function given in Example 5. ■

before



Because the natural logarithm is undefined for negative numbers, you will often
encounter expressions of the form The following theorem states that you can
differentiate functions of the form as if the absolute value notation was not
present.

EXAMPLE 7 Derivative Involving Absolute Value

Find the derivative of 

Solution Using Theorem 5.4, let and write

Simplify.

EXAMPLE 8 Finding Relative Extrema

Locate the relative extrema of 

Solution Differentiating you obtain

Because when you can apply the First Derivative Test and
conclude that the point is a relative minimum. Because there are no other
critical points, it follows that this is the only relative extremum (see Figure 5.7).

■

#"1, ln 2$
x ! "1,dy"dx ! 0

dy
dx

!
2x $ 2

x2 $ 2x $ 3
.

y,

y ! ln#x2 $ 2x $ 3$.

! "tan x.

u ! cos x!
"sin x
cos x

d
dx

(ln.u.) !
u'
u

d
dx

(ln.cos x.) !
u'
u

u ! cos x

f#x$ ! ln.cos x..

y ! ln.u.
ln.u..
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THEOREM 5.4 DERIVATIVE INVOLVING ABSOLUTE VALUE

If is a differentiable function of such that then

d
dx

(ln.u.) !
u'
u

.

u # 0,xu

PROOF If then and the result follows from Theorem 5.3. If 
then and you have 

■!
u'
u

.

!
"u'
"u

d
dx

(ln.u.) !
d

dx
(ln#"u$)

.u. ! "u,
u < 0,.u. ! u,u > 0,

x

2

−1−2

Relative minimum

(−1, ln 2)

y = ln (x2 + 2x + 3)

y

The derivative of changes from negative to
positive at 
Figure 5.7

x ! "1.
y



1. Complete the table below. Use a graphing utility and Simpson’s
Rule with to approximate the integral 

2. (a) Plot the points generated in Exercise 1 and connect them
with a smooth curve. Compare the result with the graph of

(b) Use a graphing utility to graph for
Compare the result with the graph of

In Exercises 3–6, use a graphing utility to evaluate the
logarithm by (a) using the natural logarithm key and (b) using
the integration capabilities to evaluate the integral 

3. ln 45 4. ln 8.3

5. ln 0.8 6. ln 0.6

In Exercises 7–10, match the function with its graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

7. 8.

9. 10.

In Exercises 11–18, sketch the graph of the function and state its
domain.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19 and 20, use the properties of logarithms to
approximate the indicated logarithms, given that 
and

19. (a) (b) (c) (d)

20. (a) (b) (c) (d)

In Exercises 21–30, use the properties of logarithms to expand
the logarithmic expression.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Exercises 31–36, write the expression as a logarithm of a
single quantity.

31. 32.

33.

34.

35.

36.

In Exercises 37 and 38, (a) verify that by using a graphing
utility to graph and in the same viewing window and 
(b) verify that algebraically.

37.

38.

In Exercises 39–42, find the limit.

39. 40.

41. 42.

In Exercises 43– 46, find an equation of the tangent line to the
graph of the logarithmic function at the point 

43. 44.

45. 46.

In Exercises 47–76, find the derivative of the function.

47. 48.

49. 50.

51. 52. y ! x2 ln xy ! #ln x$4

h#x$ ! ln#2x2 $ 1$g#x$ ! ln x2

f #x$ ! ln#x " 1$f #x$ ! ln#3x$

y ! ln x1"2y ! x4

y ! ln x3"2y ! ln x 3

/1, 00.

lim
x→5$

 ln 
x

*x " 4
lim

x→2"
 ln(x 2#3 " x$)

lim
x→6"

 ln#6 " x$lim
x→3$

 ln#x " 3$

g#x$ ! 1
2(ln x $ ln#x 2 $ 1$)f #x$ ! ln*x#x 2 $ 1$,

g#x$ ! 2 ln x " ln 4x > 0,f #x$ ! ln  
x 2

4
,

f ! g
gf

f ! g

3
2(ln#x 2 $ 1$ " ln#x $ 1$ " ln#x " 1$)
2 ln 3 " 1

2 ln#x 2 $ 1$
2(ln x " ln#x $ 1$ " ln#x " 1$)

1
3(2 ln#x $ 3$ $ ln x " ln#x 2 " 1$)

3 ln x $ 2 ln y " 4 ln zln#x " 2$ " ln#x $ 2$

ln  
1
e

ln z#z " 1$2

ln#3e2$ln*x " 1
x

ln*a " 1ln#x*x2 $ 5$
ln#xyz$ln

xy
z

ln*x5ln
x
4

ln 1
72ln 3*12ln 24ln 0.25

ln *3ln 81ln 2
3ln 6

ln 3 y 1.0986.
ln 2 y 0.6931

f #x$ ! ln#x " 2) $ 1h#x) ! ln#x $ 2)

g#x$ ! 2 $ ln xf #x$ ! ln#x " 1$
f #x$ ! ln.x.f #x$ ! ln 2x

f #x$ ! "2 ln xf #x$ ! 3 ln x

f #x$ ! "ln#"x$f #x$ ! ln#x " 1$
f #x$ ! "ln xf #x$ ! ln x $ 1

x

1

2

−1

−3

−2

31 4 5 

y

x

2

−1
−1−3−4

−2

y

x

1

2

3

4

y

1 2 3 4 5

x

1

2

−1

−3

−2

2 3 4 5 

y

!x
1 /1/t0 dt.

y ! ln x.
0.2 ( x ( 4.

y ! !x
1#1"t$ dt

y ! ln x.

!x
1 #1"t$ dt.n ! 10
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5.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

x 0.5 1.5 2 2.5 3 3.5 4

%x

1
/1/t0 dt



53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67.

68.

69. 70.

71. 72.

73. 74.

75. 76.

In Exercises 77– 82, (a) find an equation of the tangent line to
the graph of at the given point, (b) use a graphing utility to
graph the function and its tangent line at the point, and (c) use the
derivative feature of a graphing utility to confirm your results.

77.

78.

79.

80.

81.

82.

In Exercises 83–86, use implicit differentiation to find 

83. 84.

85. 86.

In Exercises 87 and 88, use implicit differentiation to find an
equation of the tangent line to the graph at the given point.

87.

88.

In Exercises 89 and 90, show that the function is a solution of
the differential equation.

89.

90.

In Exercises 91–96, locate any relative extrema and inflection
points. Use a graphing utility to confirm your results.

91. 92.

93. 94.

95. 96.

Linear and Quadratic Approximations In Exercises 97 and 98,
use a graphing utility to graph the function. Then graph 

and

in the same viewing window. Compare the values of and 
and their first derivatives at 

97. 98.

In Exercises 99 and 100, use Newton’s Method to approximate,
to three decimal places, the -coordinate of the point of intersec-
tion of the graphs of the two equations. Use a graphing utility to
verify your result.

99. 100.

In Exercises 101–106, use logarithmic differentiation to find

101.

102.

103. 104.

105.

106. y !
#x $ 1$#x " 2$
#x " 1$#x $ 2$,  x > 2

y !
x#x " 1$3"2

*x $ 1
,  x > 1

y !*x2 " 1
x2 $ 1

,  x > 1y !
x2*3x " 2

#x $ 1$2 ,  x >
2
3

y ! *x2#x $ 1$#x $ 2$,  x > 0

y ! x*x2 $ 1,  x > 0

dy/dx.

y ! 3 " xy ! ln x,y ! "xy ! ln x,

x

f #x$ ! x ln xf #x$ ! ln x

x ! 1.
P2P1,f,

P2/x0 ! f /10 1 f'/10/x " 10 1 1
2 f& /10/x " 1$2

P1/x0 ! f /10 1 f'/10/x " 10

y ! x2 ln
x
4

y !
x

ln x

y !
ln x

x
y ! x ln x

y ! x " ln xy !
x2

2
" ln x

x $ y " xy' ! 0y ! x ln x " 4x

xy& $ y' ! 0y ! 2 ln x $ 3

Differential EquationFunction

#e, 1$y2 $ ln xy ! 2,

#1, 0$x $ y " 1 ! ln#x2 $ y2$,

4xy $ ln x2y ! 74x3 $ ln y2 $ 2y ! 2x

ln xy $ 5x ! 30x2 " 3 ln y $ y2 ! 10

dy/dx.

#"1, 0$f #x$ !
1
2

x ln x2,

#1, 0$f #x$ ! x3 ln x,

#1, 0$f #x$ ! sin 2x ln x2,

&)
4

, ln*3
2'f #x$ ! ln*1 $ sin2 x,

#0, 4$f #x$ ! 4 " x2 " ln#1
2 x $ 1$,
#1, 3$f #x$ ! 3x2 " ln x,

f

g#x$ ! %ln x

1
#t 2 $ 3$ dtf #x$ ! %ln#2x$

2
#t $ 1$ dt

y ! ln*2 $ cos2 xy ! ln."1 $ sin x
2 $ sin x .

y ! ln.sec x $ tan x.y ! ln. cos x
cos x " 1.

y ! ln.csc x.y ! ln.sin x.
y !

"*x2 $ 4
2x2 "

1
4

 ln &2 $ *x2 $ 4
x '

y !
"*x2 $ 1

x
$ ln#x $ *x2 $ 1 $

f #x$ ! ln#x $ *4 $ x 2 $f #x$ ! ln&*4 $ x2

x '
y ! ln 3*x " 1

x $ 1
y ! ln*x $ 1

x " 1

y ! ln#ln x$y ! ln#ln x2$

h#t$ !
ln t

t
g#t$ !

ln t
t 2

f #x$ ! ln& 2x
x $ 3'f #x$ ! ln& x

x2 $ 1'
y ! ln(t#t2 $ 3$3]y ! ln#x*x2 " 1 $
y ! ln*x2 " 4y ! ln#t $ 1$2

332 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

107. In your own words, state the properties of the natural
logarithmic function.

108. Define the base for the natural logarithmic function.

109. Let be a function that is positive and differentiable on the
entire real line. Let 

(a) If is increasing, must be increasing? Explain.

(b) If the graph of is concave upward, must the graph of
be concave upward? Explain.

110. Consider the function on 

(a) Explain why Rolle’s Theorem (Section 3.2) does not
apply.

(b) Do you think the conclusion of Rolle’s Theorem is
true for Explainf ?

(1, 3).f #x$ ! x " 2 ln x

g
f

fg

g#x$ ! ln f #x$.
f

WRITING ABOUT CONCEPTS



True or False? In Exercises 111–114, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

111.

112.

113. If then 

114. If then 

115. Home Mortgage The term (in years) of a $200,000 home
mortgage at 7.5% interest can be approximated by

where is the monthly payment in dollars.

(a) Use a graphing utility to graph the model.

(b) Use the model to approximate the term of a home mortgage
for which the monthly payment is $1398.43. What is the
total amount paid?

(c) Use the model to approximate the term of a home mortgage
for which the monthly payment is $1611.19. What is the
total amount paid?

(d) Find the instantaneous rates of change of with respect to
when and 

(e) Write a short paragraph describing the benefit of the
higher monthly payment.

116. Sound Intensity The relationship between the number of
decibels and the intensity of a sound in watts per
centimeter squared is 

Use the properties of logarithms to write the formula in
simpler form, and determine the number of decibels of a
sound with an intensity of watt per square centimeter.

117. Modeling Data The table shows the temperatures ( ) at
which water boils at selected pressures (pounds per square
inch). (Source: Standard Handbook of Mechanical Engineers)

A model that approximates the data is

(a) Use a graphing utility to plot the data and graph the model.

(b) Find the rates of change of with respect to when
and

(c) Use a graphing utility to graph Find and

interpret the result in the context of the problem.

118. Modeling Data The atmospheric pressure decreases with
increasing altitude. At sea level, the average air pressure is one
atmosphere (1.033227 kilograms per square centimeter). The
table shows the pressures (in atmospheres) at selected
altitudes (in kilometers).

(a) Use a graphing utility to find a model of the form
for the data. Explain why the result is an

error message.

(b) Use a graphing utility to find the logarithmic model
for the data.

(c) Use a graphing utility to plot the data and graph the model.

(d) Use the model to estimate the altitude when 

(e) Use the model to estimate the pressure when 

(f) Use the model to find the rates of change of pressure when
and Interpret the results.

119. Tractrix A person walking along a dock drags a boat by a
10-meter rope. The boat travels along a path known as a
tractrix (see figure). The equation of this path is

(a) Use a graphing utility to       
graph the function.

(b) What are the slopes of this
path when and 

(c) What does the slope of the
path approach as 

121. Conjecture Use a graphing utility to graph and in the
same viewing window and determine which is increasing at
the greater rate for large values of What can you conclude
about the rate of growth of the natural logarithmic function?

(a) (b)

122. To approximate you can use a function of the form

(This function is known as a Padé

approximation.) The values of and are equal
to the corresponding values of Show that these values are
equal to 1 and find the values of and such that

Then use a graphing utility to 
compare the graphs of and ex.f
f #0$ ! f'#0$ ! f&#0$ ! 1.

cb,a,
ex.

f&#0$f'#0$,f #0$,
f #x$ !

a $ bx
1 $ cx

.

ex,

g#x$ ! 4*xf #x$ ! ln x,g#x$ ! *xf #x$ ! ln x,

x.

gf

x → 10?

x ! 9?x ! 5

x

5

5

10

10

Tractrix

y

y ! 10 ln&10 $ *100 " x2

x ' " *100 " x2.

h ! 20.h ! 5

h ! 13.

p ! 0.75.

h ! a $ b ln p

p ! a $ b ln h

h
p

lim
p→%

T'#p$T'.

p ! 70.p ! 10
pT

T ! 87.97 $ 34.96 ln p $ 7.91*p.

p
*FT

10"10

+ ! 10 log10& I
10"16'.

I+

x ! $1611.19.x ! $1398.43x
t

x

x > 1250t ! 13.375 ln& x
x " 1250',

t

y' ! 1.y ! ln e,

y' ! 1").y ! ln ),

ln xy ! ln x ln y

ln#x $ 25$ ! ln x $ ln 25
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p 5 10 14.696 #1 atm$ 20

T 162.24* 193.21* 212.00* 227.96*

p 30 40 60 80 100

T 250.33* 267.25* 292.71* 312.03* 327.81*

h 0 5 10 15 20 25

p 1 0.55 0.25 0.12 0.06 0.02

120. Given that where is a real number such that
determine the rates of change of when (a) 

and (b) x ! 100.
x ! 10fa > 0,

af #x$ ! ln xa,

CAPSTONE



■ Use the Log Rule for Integration to integrate a rational function.
■ Integrate trigonometric functions.

Log Rule for Integration
The differentiation rules

and

that you studied in the preceding section produce the following integration rule.

Because the second formula can also be written as

EXAMPLE 1 Using the Log Rule for Integration

Constant Multiple Rule

Log Rule for Integration

Property of logarithms

Because cannot be negative, the absolute value notation is unnecessary in the final
form of the antiderivative.

EXAMPLE 2 Using the Log Rule with a Change of Variables

Find

Solution If you let then 

Multiply and divide by 4.

Substitute:

Apply Log Rule.

Back-substitute. ■!
1
4

 ln.4x " 1. $ C

!
1
4

 ln.u. $ C

u ! 4x " 1.!
1
4%1

u
du

% 1
4x " 1

dx !
1
4%& 1

4x " 1'4 dx

du ! 4 dx.u ! 4x " 1,

% 1
4x " 1

dx.

x2

! ln#x2$ $ C

! 2 ln.x. $ C

%2
x

dx ! 2%1
x

dx

du ! u' dx,

d
dx

(ln.u.) !
u'
u

d
dx

(ln.x.) !
1
x
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5.2 The Natural Logarithmic Function: Integration

THEOREM 5.5 LOG RULE FOR INTEGRATION

Let be a differentiable function of 

1. 2. %1
u

du ! ln.u. $ C%1
x

dx ! ln.x. $ C

x.u

Alternative form of Log Rule%u'
u

dx ! ln.u. $ C.

E X P L O R A T I O N

Integrating Rational Functions
Early in Chapter 4, you learned
rules that allowed you to integrate

polynomial function. The Log
Rule presented in this section goes
a long way toward enabling you to
integrate rational functions. For
instance, each of the following
functions can be integrated with
the Log Rule.

Example 1

Example 2

Example 3

Example 4(a)

Example 4(c)

Example 4(d)

Example 5

Example 6

There are still some rational 
functions that cannot be integrated
using the Log Rule. Give examples
of these functions, and explain
your reasoning.

2x
#x $ 1$2

x2 $ x $ 1
x2 $ 1

1
3x $ 2

x $ 1
x2 $ 2x

3x2 $ 1
x3 $ x

x
x2 $ 1

1
4x " 1

2
x

any



Example 3 uses the alternative form of the Log Rule. To apply this rule, look for
quotients in which the numerator is the derivative of the denominator.

EXAMPLE 3 Finding Area with the Log Rule

Find the area of the region bounded by the graph of 

the -axis, and the line 

Solution In Figure 5.8, you can see that the area of the region is given by the 
definite integral

If you let then To apply the Log Rule, multiply and divide by 2
as shown.

Multiply and divide by 2.

EXAMPLE 4 Recognizing Quotient Forms of the Log Rule

a.

b.

c.

d.

■

With antiderivatives involving logarithms, it is easy to obtain forms that look
quite different but are still equivalent. For instance, both of the following are
equivalent to the antiderivative listed in Example 4(d).

and ln.3x $ 2.1"3 $ Cln.#3x $ 2$1"3. $ C

!
1
3

 ln.3x $ 2. $ C

u ! 3x $ 2% 1
3x $ 2

dx !
1
3% 3

3x $ 2
dx

!
1
2

 ln.x2 $ 2x. $ C

u ! x2 $ 2x% x $ 1
x2 $ 2x

dx !
1
2% 2x $ 2

x2 $ 2x
dx

u ! tan x%sec2 x
tan x

dx ! ln.tan x. $ C

u ! x3 $ x%3x2 $ 1
x3 $ x

dx ! ln.x3 $ x. $ C

- 1.151

ln 1 ! 0!
1
2

 ln 10

!
1
2

#ln 10 " ln 1$

%u'
u

dx ! ln.u. $ C!
1
2+ln#x2 $ 1$,

3

0

%3

0

x
x2 $ 1

dx !
1
2%3

0

2x
x2 $ 1

dx

u' ! 2x.u ! x2 $ 1,

%3

0

x
x2 $ 1

dx.

x ! 3.x

y !
x

x2 $ 1
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x

0.1

0.2

0.3

0.4

0.5

1 2 3

xy = 
x2 + 1

y

Area

The area of the region bounded by the graph
of the -axis, and is 
Figure 5.8

1
2 ln 10.x ! 3xy,

! %3

0

x
x2 $ 1

dx



Integrals to which the Log Rule can be applied often appear in disguised form.
For instance, if a rational function has a numerator of degree greater than or equal to
that of the denominator, division may reveal a form to which you can apply the Log
Rule. This is shown in Example 5.

EXAMPLE 5 Using Long Division Before Integrating

Find

Solution Begin by using long division to rewrite the integrand.

Now, you can integrate to obtain

Rewrite using long division.

Rewrite as two integrals.

Integrate.

Check this result by differentiating to obtain the original integrand. ■

The next example presents another instance in which the use of the Log Rule is
disguised. In this case, a change of variables helps you recognize the Log Rule.

EXAMPLE 6 Change of Variables with the Log Rule

Find

Solution If you let then and 

Substitute.

Rewrite as two fractions.

Rewrite as two integrals.

Integrate.

Simplify.

Back-substitute.

Check this result by differentiating to obtain the original integrand. ■

! 2 ln.x $ 1. $
2

x $ 1
$ C

! 2 ln.u. $
2
u

$ C

! 2 ln.u. " 2&u"1

"1' $ C

! 2%du
u

" 2%u"2 du

! 2%& u
u2 "

1
u2' du

% 2x
#x $ 1$2 dx ! %2#u " 1$

u2 du

x ! u " 1.du ! dxu ! x $ 1,

% 2x
#x $ 1$2 dx.

! x $
1
2

 ln#x2 $ 1$ $ C.

! %dx $
1
2% 2x

x2 $ 1
dx

%x2 $ x $ 1
x2 $ 1

dx ! %&1 $
x

x2 $ 1' dx

1 $
x

x2 $ 1
x2 $ x $ 1

x2 $ 1

%x2 $ x $ 1
x2 $ 1

dx.
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1
x2 $ 1 ) x2 $ x $ 1

x2 $ 1
x

If you have access
to a computer algebra system, use 
it to find the indefinite integrals in
Examples 5 and 6. How does the form
of the antiderivative that it gives you
compare with that given in Examples
5 and 6?

TECHNOLOGY



As you study the methods shown in Examples 5 and 6, be aware that both
methods involve rewriting a disguised integrand so that it fits one or more of the basic
integration formulas. Throughout the remaining sections of Chapter 5 and in Chapter
8, much time will be devoted to integration techniques. To master these techniques,
you must recognize the “form-fitting” nature of integration. In this sense, integration
is not nearly as straightforward as differentiation. Differentiation takes the form

“Here is the question; what is the answer?”

Integration is more like

“Here is the answer; what is the question?”

The following are guidelines you can use for integration.

EXAMPLE 7 u-Substitution and the Log Rule

Solve the differential equation 

Solution The solution can be written as an indefinite integral.

Because the integrand is a quotient whose denominator is raised to the first power, you
should try the Log Rule. There are three basic choices for The choices and

fail to fit the form of the Log Rule. However, the third choice does fit.
Letting produces and you obtain the following.

Divide numerator and denominator by 

Substitute:

Apply Log Rule.

Back-substitute.

So, the solution is ■y ! ln.ln x. $ C.

! ln.ln x. $ C

! ln.u. $ C

u ! ln x.! %u'
u

dx

x.% 1
x ln x

dx ! %1"x
ln x

dx

u' ! 1"x,u ! ln x
u'"uu ! x ln x

u ! xu.

y ! % 1
x ln x

dx

dy
dx

!
1

x ln x
.
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Keep in mind that you 
can check your answer to an integration
problem by differentiating the answer.
For instance, in Example 7, the deriva-
tive of is
y' ! 1"#x ln x$.

y ! ln.ln x. $ C

STUDY TIP

GUIDELINES FOR INTEGRATION

1. Learn a basic list of integration formulas. (Including those given in this
section, you now have 12 formulas: the Power Rule, the Log Rule, and ten
trigonometric rules. By the end of Section 5.7, this list will have expanded 
to 20 basic rules.)

2. Find an integration formula that resembles all or part of the integrand, and,
by trial and error, find a choice of that will make the integrand conform 
to the formula.

3. If you cannot find a -substitution that works, try altering the integrand. You
might try a trigonometric identity, multiplication and division by the same
quantity, addition and subtraction of the same quantity, or long division. 
Be creative.

4. If you have access to computer software that will find antiderivatives
symbolically, use it.

u

u



Integrals of Trigonometric Functions
In Section 4.1, you looked at six trigonometric integration rules—the six that 
correspond directly to differentiation rules. With the Log Rule, you can now complete
the set of basic trigonometric integration formulas.

EXAMPLE 8 Using a Trigonometric Identity

Find

Solution This integral does not seem to fit any formulas on our basic list. However,
by using a trigonometric identity, you obtain

Knowing that you can let and write

Trigonometric identity

Substitute:

Apply Log Rule.

Back-substitute. ■

Example 8 uses a trigonometric identity to derive an integration rule for the
tangent function. The next example takes a rather unusual step (multiplying and
dividing by the same quantity) to derive an integration rule for the secant function.

EXAMPLE 9 Derivation of the Secant Formula

Find

Solution Consider the following procedure.

Letting be the denominator of this quotient produces

So, you can conclude that 

Rewrite integrand.

Substitute:

Apply Log Rule.

Back-substitute. ■! ln.sec x $ tan x. $ C.

! ln.u. $ C

u ! sec x $ tan x.! %u'
u

dx

%sec x dx ! %sec2 x $ sec x tan x
sec x $ tan x

dx

u' ! sec x tan x $ sec2 x.u ! sec x $ tan x

u

! %sec2 x $ sec x tan x
sec x $ tan x

dx

%sec x dx ! %sec x&sec x $ tan x
sec x $ tan x' dx

%sec x dx.

! "ln.cos x. $ C.

! "ln.u. $ C

u ! cos x.! "%u'
u

dx

%tan x dx ! "%"sin x
cos x

dx

u ! cos xDx(cos x) ! "sin x,

%tan x dx ! %sin x
cos x

dx.

%tan x dx.
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INTEGRALS OF THE SIX BASIC TRIGONOMETRIC FUNCTIONS

%csc u du ! "ln.csc u $ cot u. $ C%sec u du ! ln.sec u $ tan u. $ C

%cot u du ! ln.sin u. $ C%tan u du ! "ln.cos u. $ C

%cos u du ! sin u $ C%sin u du ! "cos u $ C

With the results of Examples 8 and 9, you now have integration formulas for
and All six trigonometric rules are summarized below. (For

proofs of and see Exercises 91 and 92.)

EXAMPLE 10 Integrating Trigonometric Functions

Evaluate 

Solution Using you can write

for

EXAMPLE 11 Finding an Average Value

Find the average value of on the interval 

Solution

Simplify.

Integrate.

The average value is about 0.441, as shown in Figure 5.9. ■

- 0.441

! "
4
)

 ln&*2
2 '

! "
4
)+ln&*2

2 ' " ln#1$,
!

4
)+"ln.cos x.,

)"4

0

!
4
)%)"4

0
tan x dx

Average value !
1

b " a%b

a
f #x$ dxAverage value !

1
#)"4$ " 0 %)"4

0
tan x dx

+0,
)
4,.f #x$ ! tan x

- 0.881.

! ln#*2 $ 1$ " ln 1

! ln.sec x $ tan x.,)"4

0

0 ( x (
)
4

.sec x , 0! %)"4

0
sec x dx

%)"4

0
*1 $ tan2 x dx ! %)"4

0
*sec2 x dx

1 $ tan2 x ! sec2 x,

%)"4

0
*1 $ tan2 x dx.

csc u,cot u
sec x.tan x,cos x,sin x,

NOTE Using trigonometric identities
and properties of logarithms, you could
rewrite these six integration rules in
other forms. For instance, you could
write

(See Exercises 93–96.)

%csc u du ! ln.csc u " cot u. $ C.

x

1

2

π
4

Average value ≈ 0.441

y

f (x) = tan x

Figure 5.9



In Exercises 1–26, find the indefinite integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

In Exercises 27–30, find the indefinite integral by -substitution.
( : Let be the denominator of the integrand.)

27. 28.

29. 30.

In Exercises 31– 40, find the indefinite integral.

31. 32.

33. 34.

35. 36.

37. 38.

39.

40.

In Exercises 41– 46, solve the differential equation. Use a
graphing utility to graph three solutions, one of which passes
through the given point.

41. 42.

43. 44.

45.

46.

47. Determine the function if 

48. Determine the function if 

Slope Fields In Exercises 49– 52, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

49. 50.

51. 52.

x

y

−

4

−4

π
2

π
2x

y

6
−1

−2

1

2

3

4

#0, 1$dy
dx

! sec x,#1, 4$dy
dx

! 1 $
1
x
,

x

1

2

3

−1

−2

−1

−3

y

5
x

3

4−2

−3

y

#1, "2$dy
dx

!
ln x

x
,#0, 1$dy

dx
!

1
x $ 2

,

f'#2$ ! 0, x > 1.

f #2$ ! 3,f&#x$ ! "
4

#x " 1$2 " 2,f

f'#1$ ! 1, x > 0.

f #1$ ! 1,f&#x$ !
2
x2,f

#), 4$dr
dt

!
sec2 t

tan t $ 1
,

#0, 2$ds
d-

! tan 2-,

#0, 4$dy
dx

!
2x

x2 " 9
,#1, 0$dy

dx
!

3
2 " x

,

#"1, 0$dy
dx

!
x " 2

x
,#1, 2$dy

dx
!

4
x
,

%#sec 2x $ tan 2x$ dx

%sec x tan x
sec x " 1

dx

%csc2 t
cot t

dt% cos t
1 $ sin t

dt

%&2 " tan
-
4' d-% #cos 3- " 1$ d-

%sec
x
2

dx%csc 2x dx

%tan 5- d-% cot 
-
3

d-

% 3*x
3*x " 1

dx% *x
*x " 3

dx

% 1
1 $ *3x

dx% 1
1 $ *2x

dx

uHint
u

%x#x " 2$
#x " 1$3 dx% 2x

#x " 1$2 dx

% 1
x2"3#1 $ x1"3$ dx% 1

*x $ 1
dx

% 1
x ln x3 dx%#ln x$2

x
dx

%x3 " 3x2 $ 4x " 9
x2 $ 3

dx%x 4 $ x " 4
x2 $ 2

dx

%x3 " 6x " 20
x $ 5

dx%x3 " 3x2 $ 5
x " 3

dx

%2x2 $ 7x " 3
x " 2

dx%x2 " 3x $ 2
x $ 1

dx

% x#x $ 2$
x3 $ 3x2 " 4

dx% x2 $ 2x $ 3
x3 $ 3x2 $ 9x

dx

% x
*9 " x2

dx%x2 " 4
x

dx

% x2 " 2x
x3 " 3x2 dx%4x3 $ 3

x4 $ 3x
dx

% x2

5 " x3 dx% x
x2 " 3

dx

% 1
4 " 3x

dx% 1
2x $ 5

dx

% 1
x " 5

dx% 1
x $ 1

dx

%10
x

dx%5
x

dx
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5.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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In Exercises 85– 88, state the integration formula you would
use to perform the integration. Do not integrate.

85. 86.

87. 88. %sec2 x
tan x

dx% x
x2 $ 4

dx

% x
#x2 $ 4$3 dx% 3*x dx

WRITING ABOUT CONCEPTS

In Exercises 53– 60, evaluate the definite integral. Use a graphing
utility to verify your result.

53. 54.

55. 56.

57. 58.

59. 60.

In Exercises 61– 66, use a computer algebra system to find or
evaluate the integral.

61. 62.

63. 64.

65. 66.

In Exercises 67–70, find 

67. 68.

69. 70.

Approximation In Exercises 71 and 72, determine which value
best approximates the area of the region between the -axis and
the graph of the function over the given interval. (Make your
selection on the basis of a sketch of the region and not by
performing any calculations.)

71.

(a) (b) (c) (d) (e)

72.

(a) 3 (b) 7 (c) (d) 5 (e) 1

Area In Exercises 73–76, find the area of the given region. Use
a graphing utility to verify your result.

73. 74.

75. 76.

Area In Exercises 77–80, find the area of the region bounded
by the graphs of the equations. Use a graphing utility to verify
your result.

77.

78.

79.

80.

Numerical Integration In Exercises 81– 84, use the Trapezoidal
Rule and Simpson’s Rule to approximate the value of the
definite integral. Let and round your answer to four
decimal places. Use a graphing utility to verify your result.

81. 82.

83. 84.

89. Find a value of such that %x

1

3
t

dt ! %x

1"4

1
t

dt.x

%)"3

")"3
 sec x dx%6

2
 ln x dx

%4

0

8x
x2 $ 4

dx%5

1

12
x

dx

n ! 4

y ! 0x ! 4,x ! 1,y ! 2x " tan 0.3x,

y ! 0x ! 2,x ! 0,y ! 2 sec 
)x
6

,

y ! 0x ! 5,x ! 1,y !
x $ 6

x
,

y ! 0x ! 4,x ! 1,y !
x2 $ 4

x
,

y

x

−1

1

2

π− π
2

π

y

x

1

− π
2

π
2

y !
sin x

1 $ cos x
y ! tan x

y

x
1 2 3 4

1

2

3

4

y

x
−2 2 4 6

−2

2

4

6

y !
2

x ln x
y !

6
x

"2

(0, 4)f #x$ !
2x

x2 $ 1
,

31.251
2"66

(0, 1)f #x$ ! sec x,

x

F#x$ ! %x2

1

1
t

dtF #x$ ! %3x

1

1
t

dt

F #x$ ! %x

0
 tan t dtF #x$ ! %x

1

1
t

dt

F'/x0.

%)"4

")"4

sin2 x " cos2 x
cos x

dx%)"2

)"4
#csc x " sin x$ dx

% x2

x " 1
dx% *x

x " 1
dx

% 1 " *x
1 $ *x

dx% 1
1 $ *x

dx

%0.2

0.1
#csc 2- " cot 2-$2 d-%2

1

1 " cos -
- " sin -

d-

%1

0

x " 1
x $ 1

dx%2

0

x2 " 2
x $ 1

dx

%e2

e

1
x ln x

dx%e

1

#1 $ ln x$2

x
dx

%1

"1

1
2x $ 3

dx%4

0

5
3x $ 1

dx

90. Find a value of such that 

is equal to (a) ln 5 and (b) 1.

%x

1

1
t

dt

x

CAPSTONE

CAS



342 Chapter 5 Logarithmic, Exponential, and Other Transcendental Functions

91. Show that 

92. Show that 

In Exercises 93–96, show that the two formulas are equivalent.

93.

94.

95.

96.

In Exercises 97–100, find the average value of the function over
the given interval.

97. 98.

99. 100.

101. Population Growth A population of bacteria is changing at
a rate of 

where is the time in days. The initial population (when
is 1000. Write an equation that gives the population at

any time and find the population when days.

102. Heat Transfer Find the time required for an object to cool
from 300 F to F by evaluating

where is time in minutes.

103. Average Price The demand equation for a product is 

Find the price on the interval 

104. Sales The rate of change in sales is inversely proportional
to time measured in weeks. Find as a function of 
if sales after 2 and 4 weeks are 200 units and 300 units,
respectively.

True or False? In Exercises 105–108, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

105.

106.

107.

108.

109. Orthogonal Trajectory

(a) Use a graphing utility to graph the equation

(b) Evaluate the integral to find in terms of 

For a particular value of the constant of integration, graph
the result in the same viewing window used in part (a).

(c) Verify that the tangents to the graphs in parts (a) and (b)
are perpendicular at the points of intersection.

110. Graph the function

on the interval 

(a) Find the area bounded by the graph of and the line

(b) Determine the values of the slope such that the line
and the graph of enclose a finite region. 

(c) Calculate the area of this region as a function of 

111. Napier’s Inequality For show that

112. Prove that the function

is constant on the interval #0, %$.

F #x$ ! %2x

x

1
t

dt

1
y

<
ln y " ln x

y " x
<

1
x
.

0 < x < y,

m.

fy ! mx
m

y ! 1
2 x.

f

(0, %$.

f #x$ !
x

1 $ x2

y2 ! e"!#1"x$ dx

x.y2

2x2 " y2 ! 8.

%2

"1

1
x

dx ! +ln.x.,
2

"1
! ln 2 " ln 1 ! ln 2

c # 0%1
x

dx ! ln.cx.,
! ln x dx ! #1"x$ $ C

#ln x$1"2 ! 1
2#ln x$

tS#t > 1$t
S

40 ( x ( 50.paverage

p !
90,000

400 $ 3x
.

t

t !
10

ln 2%300

250

1
T " 100

dT

250**

t ! 3t,
t ! 0)

t

dP
dt

!
3000

1 $ 0.25t

(0, 2)f #x$ ! sec
)x
6

,(1, e)f #x$ !
2 ln x

x
,

y

x
1 2 3 4

−2
−1

Average
value

y

x
−2 −1−3−4 1 2 3 4

1
2
3
4
5
6
7

Average
value

(2, 4)f #x$ !
4#x $ 1$

x2 ,(2, 4)f #x$ !
8
x2,

%csc x dx ! ln.csc x " cot x. $ C

%csc x dx ! "ln.csc x $ cot x. $ C

%sec x dx ! "ln.sec x " tan x. $ C

%sec x dx ! ln.sec x $ tan x. $ C

%cot x dx ! "ln.csc x. $ C

%cot x dx ! ln.sin x. $ C

%tan x dx ! ln.sec x. $ C

%tan x dx ! "ln.cos x. $ C

% csc u du ! "ln.csc u $ cot u. $ C.

% cot u du ! ln.sin u. $ C.
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5.3 Inverse Functions
■ Verify that one function is the inverse function of another function.
■ Determine whether a function has an inverse function.
■ Find the derivative of an inverse function.

Inverse Functions
Recall from Section P.3 that a function can be represented by a set of ordered pairs.
For instance, the function from to can
be written as

By interchanging the first and second coordinates of each ordered pair, you can form
the inverse function of This function is denoted by It is a function from to

and can be written as

Note that the domain of is equal to the range of and vice versa, as shown in
Figure 5.10. The functions and have the effect of “undoing” each other. That is,
when you form the composition of with or the composition of with you
obtain the identity function.

and

Here are some important observations about inverse functions.

1. If is the inverse function of then is the inverse function of 

2. The domain of is equal to the range of and the range of is equal to the
domain of 

3. A function need not have an inverse function, but if it does, the inverse function is
unique (see Exercise 108).

You can think of as undoing what has been done by For example, subtrac-
tion can be used to undo addition, and division can be used to undo multiplication.
Use the definition of an inverse function to check the following.

and are inverse functions of each other.

and are inverse functions of each other.f"1#x$ !
x
c

, c # 0,f #x$ ! cx

f"1#x$ ! x " cf #x$ ! x $ c

f.f"1

f.
f"1f,f"1

g.ff,g

f"1# f #x$$ ! xf # f"1#x$$ ! x

f,f"1f"1f
f"1f

f"1,f

f"1: 1#4, 1$, #5, 2$, #6, 3$, #7, 4$2.

A,
Bf"1.f.

f : 1#1, 4$, #2, 5$, #3, 6$, #4, 7$2.

B ! 14, 5, 6, 72A ! 11, 2, 3, 42f #x$ ! x $ 3

DEFINITION OF INVERSE FUNCTION

A function is the inverse function of the function if

for each in the domain of 

and

for each in the domain of 

The function is denoted by (read “ inverse”).ff"1g

f.xg# f #x$$ ! x

gxf #g#x$$ ! x

fg

NOTE Although the notation used to denote an inverse function resembles exponential
notation, it is a different use of as a superscript. That is, in general, ■f "1#x$ # 1"f #x$."1

f

f −1

Domain of range of
Domain of range of
Figure 5.10

ff"1 !
f"1f !

E X P L O R A T I O N

Finding Inverse Functions
Explain how to “undo” each of
the following functions. Then use
your explanation to write the
inverse function of

a.

b.

c.

d.

e.

f.

Use a graphing utility to graph
each function and its inverse
function in the same “square”
viewing window. What observation
can you make about each pair of
graphs?

f #x$ ! 4#x " 2$
f #x$ ! x3

f #x$ ! 3x $ 2

f #x$ !
x
2

f #x$ ! 6x

f #x$ ! x " 5

f.



EXAMPLE 1 Verifying Inverse Functions

Show that the functions are inverse functions of each other.

and

Solution Because the domains and ranges of both and consist of all real numbers,
you can conclude that both composite functions exist for all The composition of 
with is given by

The composition of with is given by

Because and you can conclude that and are inverse
functions of each other (see Figure 5.11). ■

In Figure 5.11, the graphs of and appear to be mirror images of each
other with respect to the line The graph of is a reflection of the graph of 
in the line This idea is generalized in the following theorem.y ! x.

ff"1y ! x.
g ! f"1f

gfg# f #x$$ ! x,f #g#x$$ ! x

! x.

! 3*x3

! 3*2x3

2

g# f #x$$ ! 3*#2x3 " 1$ $ 1
2

fg

! x.

! x $ 1 " 1

! 2&x $ 1
2 ' " 1

f #g#x$$ ! 2& 3*x $ 1
2 '3

" 1

g
fx.

gf

g#x$ ! 3*x $ 1
2

f #x$ ! 2x3 " 1
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In Example 1, try comparing the functions and verbally.

For First cube then multiply by 2, then subtract 1.

For First add 1, then divide by 2, then take the cube root.

Do you see the “undoing pattern”? ■

g:

x,f :

gfSTUDY TIP

THEOREM 5.6 REFLECTIVE PROPERTY OF INVERSE FUNCTIONS

The graph of contains the point if and only if the graph of contains
the point #b, a$.

f"1#a, b$f

PROOF If is on the graph of then and you can write

So, is on the graph of as shown in Figure 5.12. A similar argument will
prove the theorem in the other direction. ■

f"1,#b, a$

f"1#b$ ! f"1# f #a$$ ! a.

f #a$ ! bf,#a, b$

x

−2

−2

1

1

2

2

y = x

f(x) = 2x3 − 1

g(x) = 3
x + 1

2

y

and are inverse functions of each other.
Figure 5.11

gf

x

(b, a)

(a, b)

y = f(x)

y = x
y

y = f −1(x)

The graph of is a reflection of the graph
of in the line 
Figure 5.12

y ! x.f
f"1



Existence of an Inverse Function
Not every function has an inverse function, and Theorem 5.6 suggests a graphical test
for those that do—the Horizontal Line Test for an inverse function. This test states that
a function has an inverse function if and only if every horizontal line intersects the
graph of at most once (see Figure 5.13). The following theorem formally states why
the Horizontal Line Test is valid. (Recall from Section 3.3 that a function is strictly
monotonic if it is either increasing on its entire domain or decreasing on its entire
domain.)

EXAMPLE 2 The Existence of an Inverse Function

Which of the functions has an inverse function?

a. b.

Solution

a. From the graph of shown in Figure 5.14(a), it appears that is increasing over its
entire domain. To verify this, note that the derivative, is positive
for all real values of So, is strictly monotonic and it must have an inverse 
function.

b. From the graph of shown in Figure 5.14(b), you can see that the function does not
pass the horizontal line test. In other words, it is not one-to-one. For instance, has
the same value when 0, and 1.

Not one-to-one

So, by Theorem 5.7, does not have an inverse function. ■f

f #"1$ ! f #1$ ! f #0$ ! 1

x ! "1,
f

f

fx.
f'#x$ ! 3x2 $ 1,

ff

f #x$ ! x3 " x $ 1f #x$ ! x3 $ x " 1

f
f
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THEOREM 5.7 THE EXISTENCE OF AN INVERSE FUNCTION

1. A function has an inverse function if and only if it is one-to-one.

2. If is strictly monotonic on its entire domain, then it is one-to-one and
therefore has an inverse function.

f

PROOF To prove the second part of the theorem, recall from Section P.3 that is
one-to-one if for and in its domain

Now, choose and in the domain of If then, because is strictly
monotonic, it follows that either

or

In either case, So, is one-to-one on the interval. The proof of the first
part of the theorem is left as an exercise (see Exercise 109). ■

ff #x1$ # f #x2$.

f #x1$ > f #x2$.f #x1$ < f #x2$

fx1 # x2,f.x2x1

f #x1$ # f #x2$.x1 # x2

x2x1

f

NOTE Often it is easier to prove that a function has an inverse function than to find the
inverse function. For instance, it would be difficult algebraically to find the inverse function of
the function in Example 2(a). ■

x

y = f(x)

a b 

f(a) = f(b)

y

If a horizontal line intersects the graph of
twice, then is not one-to-one.
Figure 5.13

f
f

x

−3

−2

−2

−1

−1

1

1

2

2

3

f (x) = x3 + x − 1

y

(a) Because is increasing over its entire
domain, it has an inverse function.

f

x
−2 −1

−1

1 2 

2

3

f(x) = x3 − x + 1

(0, 1)(−1, 1)

(1, 1)

y

(b) Because is not one-to-one, it does not
have an inverse function.

Figure 5.14

f



The following guidelines suggest a procedure for finding an inverse function.

EXAMPLE 3 Finding an Inverse Function

Find the inverse function of 

Solution From the graph of in Figure 5.15, it appears that is increasing over its

entire domain, To verify this, note that is positive on the

domain of So, is strictly monotonic and it must have an inverse function. To find
an equation for the inverse function, let and solve for in terms of 

Let

Square each side.

Solve for 

Interchange and 

Replace by 

The domain of is the range of which is You can verify this result as
shown.

■x ,
3
2

f"1# f #x$$ !
#*2x " 3 $2

$ 3
2

!
2x " 3 $ 3

2
! x,

x , 0f # f"1#x$$ !*2&x2 $ 3
2 ' " 3 ! *x2 ! x,

(0, %$.f,f"1

f "1#x$.yf"1#x$ !
x2 $ 3

2

y.xy !
x2 $ 3

2

x.x !
y2 $ 3

2

 2x " 3 ! y2

y ! f #x$.*2x " 3 ! y

y.xy ! f #x$
ff.

f' #x$ !
1

*2x " 3+3
2

, %'.

ff

f #x$ ! *2x " 3.
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NOTE Remember that any letter can be used to represent the independent variable. So,

all represent the same function. ■

f"1#s$ !
s2 $ 3

2

f"1#x$ !
x2 $ 3

2

f "1#y$ !
y 2 $ 3

2

x
1

1

2

2

3

3

4

4

y = x

f(x) =     2x − 3

f −1(x) =
2

x2 + 3

(2, 1) 

(1, 2)

0,( (3
2

, 0( (3
2

y

The domain of is the range of
Figure 5.15

f.(0, %$,f"1,

GUIDELINES FOR FINDING AN INVERSE FUNCTION

1. Use Theorem 5.7 to determine whether the function given by has
an inverse function.

2. Solve for as a function of 

3. Interchange and The resulting equation is 

4. Define the domain of as the range of 

5. Verify that and f"1# f #x$$ ! x.f # f"1#x$$ ! x

f.f"1

y ! f"1#x$.y.x

x ! g#y$ ! f"1#y$.y:x

y ! f #x$



Theorem 5.7 is useful in the following type of problem. Suppose you are given a
function that is one-to-one on its domain. By restricting the domain to an interval
on which the function is strictly monotonic, you can conclude that the new function 
one-to-one on the restricted domain.

EXAMPLE 4 Testing Whether a Function Is One-to-One

Show that the sine function 

is not one-to-one on the entire real line. Then show that is the largest
interval, centered at the origin, on which is strictly monotonic.

Solution It is clear that is not one-to-one, because many different values yield the
same value. For instance,

Moreover, is increasing on the open interval because its derivative

is positive there. Finally, because the left and right endpoints correspond to relative
extrema of the sine function, you can conclude that is increasing on the closed
interval that on any larger interval the function is not strictly 
monotonic (see Figure 5.16). ■

Derivative of an Inverse Function
The next two theorems discuss the derivative of an inverse function. The reasonableness
of Theorem 5.8 follows from the reflective property of inverse functions, as shown in
Figure 5.12. Proofs of the two theorems are given in Appendix A.

and(")"2, )"2)
f

f'#x$ ! cos x

#")"2, )"2$,f

sin#0$ ! 0 ! sin#)$.

y-
x-f

f
(")"2, )"2)

f #x$ ! sin x

is
not
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THEOREM 5.8 CONTINUITY AND DIFFERENTIABILITY OF INVERSE FUNCTIONS

Let be a function whose domain is an interval If has an inverse function,
then the following statements are true.

1. If is continuous on its domain, then is continuous on its domain.

2. If is increasing on its domain, then is increasing on its domain.

3. If is decreasing on its domain, then is decreasing on its domain.

4. If is differentiable on an interval containing and then is
differentiable at f #c$.

f"1f'#c$ # 0,cf

f"1f

f"1f

f"1f

fI.f

THEOREM 5.9 THE DERIVATIVE OF AN INVERSE FUNCTION

Let be a function that is differentiable on an interval If has an inverse
function then is differentiable at any for which Moreover,

f'#g#x$$ # 0.g'#x$ !
1

f'#g#x$$ ,

f'#g#x$$ # 0.xgg,
fI.f

x

1

−1

π π 

( (, 1
2

−

f(x) = sin x

y

π

( (−   , −1
2
π

is one-to-one on the interval

Figure 5.16
(")"2, )"2).
f

E X P L O R A T I O N

Graph the inverse functions

and

Calculate the slopes of at 
and and the slopes

of at and 
What do you observe? What 
happens at #0, 0$?

#27, 3$.#8, 2$,#1, 1$,g
#3, 27$,#2, 8$,

#1, 1$,f

g#x$ ! x1"3.

f #x$ ! x3
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dy
dx

!
1

dx"dy
.

x
−2

−2

−1

−1

1

1

2

2

3

3
m = 4

m = 1
4

(2, 3)

(3, 2)

y

f −1(x)

f (x)

The graphs of the inverse functions and 
have reciprocal slopes at points and

Figure 5.17
#b, a$.

#a, b$
f"1f

x
2

2

4

4

(4, 2)

(2, 4)

(3, 9)

6

6

8

8

10

10

(9, 3)

m = 4

m = 6

m =

m =

f −1(x) = x

f (x) = x2

y

1
4

1
6

At the derivative of is 0, and the
derivative of does not exist.
Figure 5.18

f"1
f#0, 0$,

EXAMPLE 5 Evaluating the Derivative of an Inverse Function

Let

a. What is the value of when 

b. What is the value of when 

Solution Notice that is one-to-one and therefore has an inverse function.

a. Because when you know that 

b. Because the function is differentiable and has an inverse function, you can apply
Theorem 5.9 to write

Moreover, using you can conclude that

■

In Example 5, note that at the point the slope of the graph of is 4 and at
the point the slope of the graph of is (see Figure 5.17). This reciprocal
relationship (which follows from Theorem 5.9) can be written as shown below.

If then and Theorem 5.9 says that

So,

EXAMPLE 6 Graphs of Inverse Functions Have Reciprocal Slopes

Let and let Show that the slopes of the graphs of
and are reciprocals at each of the following points.

a. and b. and

Solution The derivatives of and are given by

and

a. At the slope of the graph of is At the slope of the
graph of is

b. At the slope of the graph of is At the slope of the
graph of is

So, in both cases, the slopes are reciprocals, as shown in Figure 5.18. ■

# f"1$'#9$ !
1

2*9
!

1
2#3$ !

1
6

.

f"1
#9, 3$,f'#3$ ! 2#3$ ! 6.f#3, 9$,

# f"1$'#4$ !
1

2*4
!

1
2#2$ !

1
4

.

f"1
#4, 2$,f'#2$ ! 2#2$ ! 4.f#2, 4$,

# f"1$'#x$ !
1

2*x
.f'#x$ ! 2x

f"1f

#9, 3$#3, 9$#4, 2$#2, 4$

f"1f
f"1#x$ ! *x .#for x ≥  0$f #x$ ! x2

g'#x$ !
dy
dx

!
1

f'#g#x$$ !
1

f'# y$ !
1

#dx"dy$.

f'# y$ !
dx
dy

.f # y$ ! xy ! g#x$ ! f"1#x$,

1
4f"1#3, 2$

f#2, 3$

# f"1$'#3$ !
1

f'#2$ !
1

3
4#22$ $ 1

!
1
4

.

f'#x$ ! 3
4x2 $ 1,

# f"1$'#3$ !
1

f'# f"1#3$$ !
1

f'#2$ .

#with g ! f"1$
f

f"1#3$ ! 2.x ! 2,f #x$ ! 3

f

x ! 3?# f"1$' #x$
x ! 3?f"1#x$

f #x$ ! 1
4x3 $ x " 1.



In Exercises 1–8, show that and are inverse functions (a)
analytically and (b) graphically.

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–12, match the graph of the function with the
graph of its inverse function. [The graphs of the inverse 
functions are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

9. 10.

11. 12.

In Exercises 13–22, use a graphing utility to graph the function.
Then use the Horizontal Line Test to determine whether the
function is one-to-one on its entire domain and therefore has an
inverse function.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23–30, (a) find the inverse function of (b) graph
and on the same set of coordinate axes, (c) describe the 

relationship between the graphs, and (d) state the domain and
range of and 

23.

24.

25.

26.

27.

28.

29.

30.

In Exercises 31– 36, (a) find the inverse function of (b) use a
graphing utility to graph and in the same viewing window,
(c) describe the relationship between the graphs, and (d) state
the domain and range of and 

31. 32.

33. 34.

35.

36.

In Exercises 37 and 38, use the graph of the function to make
a table of values for the given points. Then make a second table
that can be used to find and sketch the graph of 
To print an enlarged copy of the graph, go to the website 
www.mathgraphs.com.

37. 38.

x
1

1

4 5 6

6

4

3

3

2

2

y

f

x
1

1

4

4

3

3

2

2

y

f

f "1.f "1,

f

f #x$ !
x $ 2

x

f #x$ !
x

*x2 $ 7

f #x$ ! x3"5x ≥  0f #x$ ! x2"3,

f #x$ ! 3 5*2x " 1f #x$ ! 3*x " 1

f "1.f

f "1f
f,

x , 2f #x$ ! *x2 " 4,

0 ( x ( 2f #x$ ! *4 " x2 ,

x , 0f #x$ ! x2,

f #x$ ! *x

f #x$ ! x3 " 1

f #x$ ! x5

f #x$ ! 3x

f #x$ ! 2x " 3

f "1.f

f "1f
f,

h#x$ ! .x $ 4. " .x " 4.g#x$ ! #x $ 5$3

f #x$ ! 5x*x " 1f #x$ ! ln x

g#t$ !
1

*t2 $ 1
h#s$ !

1
s " 2

" 3

f #x$ !
x2

x2 $ 4
f #-$ ! sin -

f #x$ ! 5x " 3f #x$ ! 3
4x $ 6

1

2
3

1

2 3−2−3
x

y

1

2
3

1

2 3−2 −1−3

−3

x

−2

y

42

4

6

6

8

8

−4

x
−2−4

y

1
2

2 3 4 −1

−2

−2

−4

x

y

1

2
3

1

2 3−2−3

−3

x

−2

y

x

2
3
4

21−1

−2

−2−4

y

2

4

4

6

6

8

−4

x
−2−4

y

1

2
3
4
5

1

2 3−2 −1−3
x

y

0 < x ( 1g#x$ !
1 " x

x
,x , 0,f #x$ !

1
1 $ x

,

g#x$ !
1
x

f #x$ !
1
x
,

g#x$ ! *16 " xx , 0,f #x$ ! 16 " x2,

x , 0g#x$ ! x2 $ 4,f #x$ ! *x " 4,

g#x$ ! 3*1 " xf #x$ ! 1 " x3,

g#x$ ! 3*xf #x$ ! x3,

g#x$ !
3 " x

4
f #x$ ! 3 " 4x,

g#x$ !
x " 1

5
f #x$ ! 5x $ 1,

gf
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5.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.



39. Cost You need 50 pounds of two commodities costing $1.25
and $1.60 per pound.

(a) Verify that the total cost is 
where is the number of pounds of the less expensive
commodity.

(b) Find the inverse function of the cost function. What does
each variable represent in the inverse function?

(c) What is the domain of the inverse function? Validate or
explain your answer using the context of the problem.

(d) Determine the number of pounds of the less expensive
commodity purchased if the total cost is $73.

40. Temperature The formula where
represents Celsius temperature as a function

of Fahrenheit temperature 

(a) Find the inverse function of 

(b) What does the inverse function represent?

(c) What is the domain of the inverse function? Validate or
explain your answer using the context of the problem.

(d) The temperature is What is the corresponding
temperature in degrees Fahrenheit?

In Exercises 41– 46, use the derivative to determine whether the
function is strictly monotonic on its entire domain and therefore
has an inverse function.

41. 42.

43. 44.

45. 46.

In Exercises 47–52, show that is strictly monotonic on the
given interval and therefore has an inverse function on that
interval.

47. 48.

49. 50.

51. 52.

In Exercises 53 and 54, find the inverse function of over the
given interval. Use a graphing utility to graph and in the
same viewing window. Describe the relationship between the
graphs.

53. 54.

Graphical Reasoning In Exercises 55–58, (a) use a graphing
utility to graph the function, (b) use the drawing feature of
a graphing utility to draw the inverse function of the function,
and (c) determine whether the graph of the inverse relation is an
inverse function. Explain your reasoning.

55. 56.

57. 58.

In Exercises 59–62, determine whether the function is one-to-
one. If it is, find its inverse function.

59. 60.

61. 62.

In Exercises 63–66, delete part of the domain so that the
function that remains is one-to-one. Find the inverse function of
the remaining function and give the domain of the inverse
function. (Note: There is more than one correct answer.)

63. 64.

65. 66.

Think About It In Exercises 67–70, decide whether the func-
tion has an inverse function. If so, what is the inverse function?

67. is the volume of water that has passed through a water line
minutes after a control valve is opened.

68. is the height of the tide hours after midnight, where

69. is the cost of a long distance call lasting minutes.

70. is the area of a circle of radius 

In Exercises 71–80, verify that has an inverse. Then use the
function and the given real number to find (Hint:
See Example 5.)

71. 72.

73.

74.

75.

76.

77. a ! 3x > 2,f #x$ !
x $ 6
x " 2

,

a ! 10 ( x (
)
2

,f #x$ ! cos 2x,

a !
1
2

"
)
2

( x (
)
2

,f #x$ ! sin x,

a ! "11f #x$ ! 1
27#x5 $ 2x3$,

a ! 2f #x$ ! x3 $ 2x " 1,

a ! 7f #x$ ! 5 " 2x3,a ! 26f #x$ ! x3 " 1,

/ f "10' /a0.af
f

r.A#r$
tC#t$

0 ( t < 24.
th#t$

t
g#t$

x
1

1

2

2

3

3

4

4

5

5

y

x

1

−1−2−3−4−5

2

3

4

5

y

f #x$ ! .x " 3.f #x$ ! .x $ 3.

4

8

12

20

x
1 3−1−3

y

x
1

1

2

2

3

3

4

4

5

5

y

f #x$ ! 16 " x4f #x$ ! #x " 3$2

a # 0f #x$ ! ax $ b,x ( 2f #x$ ! .x " 2.,
f #x$ ! "3f #x$ ! *x " 2

f #x$ !
4x

*x2 $ 15
g#x$ !

3x2

x2 $ 1

h#x$ ! x*4 " x2f #x$ ! x3 $ x $ 4

#0, 10$f #x$ ! 2 "
3
x2,#"2, 2$f #x$ !

x
x2 " 4

,

f "1f
f

+0,
)
2 'f #x$ ! sec x,(0, ))f #x$ ! cos x,

#0, )$f #x$ ! cot x,#0, %$f #x$ !
4
x2,

("2, %$f #x$ ! .x $ 2.,(4, %$f #x$ ! #x " 4$2,

f

f #x$ ! cos
3x
2

f #x$ ! ln#x " 3$

f #x$ ! #x $ a$3 $ bf #x$ !
x4

4
" 2x2

f #x$ ! x3 " 6x2 $ 12xf #x$ ! 2 " x " x3

22*C.

C.

F.
CF , "459.6,

C ! 5
9 #F " 32$,

x
y ! 1.25x $ 1.60#50 " x$,
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78.

79.

80.

In Exercises 81– 84, (a) find the domains of and (b) find
the ranges of and (c) graph and and (d) show that
the slopes of the graphs of and are reciprocals at the given
points.

81.

82.

83.

84.

In Exercises 85 and 86, find for the equation at the given
point.

85.

86.

In Exercises 87–90, use the functions and
to find the given value.

87. 88.

89. 90.

In Exercises 91–94, use the functions and
to find the given function.

91. 92.

93. 94.

99. Think About It The function is 
one-to-one and Find 

True or False? In Exercises 101–104, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

101. If is an even function, then exists.

102. If the inverse function of exists, then the intercept of is an
intercept of 

103. If where is odd, then exists.

104. There exists no function such that 

105. (a) Show that is not one-to-one on

(b) Determine the greatest value such that is one-to-one on

106. Let and be one-to-one functions. Prove that (a) is 
one-to-one and (b)

107. Prove that if has an inverse function, then 

108. Prove that if a function has an inverse function, then the
inverse function is unique.

109. Prove that a function has an inverse function if and only if it
is one-to-one.

110. Is the converse of the second part of Theorem 5.7 true? That
is, if a function is one-to-one (and therefore has an inverse
function), then must the function be strictly monotonic? If so,
prove it. If not, give a counterexample.

111. Let be twice-differentiable and one-to-one on an open
interval Show that its inverse function satisfies

If is increasing and concave downward, what is the concavity
of

112. If find 

113. Show that is one-to-one and find

114. Let Show that is its own inverse function. What

can you conclude about the graph of Explain.

115. Let

(a) Show that is one-to-one if and only if 

(b) Given find 

(c) Determine the values of and such that f ! f "1.dc,b,a,

f "1.bc " ad # 0,

bc " ad # 0.f

f #x$ !
ax $ b
cx $ d

.

f ?

yy !
x " 2
x " 1

.

# f"1$'#0$.

f #x$ ! %x

2
*1 $ t2 dt

# f "1$'#0$.f #x$ ! %x

2

dt
*1 $ t4

,

f "1 ! g?
f

g& #x$ ! "
f &#g#x$$

( f'#g#x$$)3 .

gI.
f

# f "1$"1 ! f.f

# f * g$"1#x$ ! #g"1
* f "1$#x$.

f * ggf

#"c, c$.
fc

#"%, %$.
f #x$ ! 2x3 $ 3x2 " 36x

f ! f "1.f

f "1nf #x$ ! xn,

f "1.x-
fy-f

f "1f

k.f "1#3$ ! "2.
f #x$ ! k#2 " x " x3$

#g * f $"1# f * g$"1

f "1
* g"1g"1

* f "1

g/x0 ! 2x " 5
f /x0 ! x 1 4

#g"1
* g"1$#"4$# f "1

* f "1$#6$
#g"1

* f "1$#"3$# f "1
* g"1$#1$

g/x0 ! x3
f /x0 ! 1

8 x " 3

#0, 2$x ! 2 ln#y 2 " 3$,
#"4, 1$x ! y 3 " 7y 2 $ 2,

dy/dx

#2, 1$f "1#x$ !*4 " x
x

#1, 2$x ≥  0f #x$ !
4

1 $ x2 ,

#1, 5$x , 0f "1#x$ ! x2 $ 4,

#5, 1$f #x$ ! *x " 4

#"1, 1$f "1#x$ !
3 " x

4

#1, "1$f #x$ ! 3 " 4x

#1
8, 1

2$f "1#x$ ! 3*x

#1
2, 1

8$f #x$ ! x3

Point    Functions

f "1f
f "1,ff "1,f

f "1,f

a ! 2f #x$ ! *x " 4,

a ! 6x > 0,f #x$ ! x3 "
4
x
,

a ! 2x > "1,f #x$ !
x $ 3
x $ 1

,
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95. Describe how to find the inverse function of a one-to-one
function given by an equation in and Give an example.

96. Describe the relationship between the graph of a function
and the graph of its inverse function.

In Exercises 97 and 98, the derivative of the function has
the same sign for all in its domain, but the function is not
one-to-one. Explain.

97. 98. f #x$ !
x

x2 " 4
f #x$ ! tan x

x

y.x

WRITING ABOUT CONCEPTS

100. Think About It The point lies on the graph of 
and the slope of the tangent line through this point is

Assume exists. What is the slope of the tangent
line to the graph of at the point #3, 1)?f "1

f "1m ! 2.

f,#1, 3)

CAPSTONE



■ Develop properties of the natural exponential function.
■ Differentiate natural exponential functions.
■ Integrate natural exponential functions.

The Natural Exponential Function
The function is increasing on its entire domain, and therefore it has an
inverse function The domain of is the set of all reals, and the range is the set
of positive reals, as shown in Figure 5.19. So, for any real number 

is any real number.

If happens to be rational, then

is a rational number.

Because the natural logarithmic function is one-to-one, you can conclude that 
and agree for rational values of The following definition extends the meaning of

to include all real values of 

The inverse relationship between the natural logarithmic function and the natural
exponential function can be summarized as follows.

EXAMPLE 1 Solving Exponential Equations

Solve 

Solution You can convert from exponential form to logarithmic form by taking the
natural logarithm of each side of the equation.

Write original equation.

Take natural logarithm of each side.

Apply inverse property.

Solve for 

Use a calculator.

Check this solution in the original equation. ■

0.946 - x

x."1 $ ln 7 ! x

 ln 7 ! x $ 1

 ln 7 ! ln#ex$1$
 7 ! ex$1

7 ! ex$1.

x.ex
x.ex

f"1#x$

xln#ex$ ! x ln e ! x#1$ ! x.

x

xf # f "1#x$$ ! ln ( f"1#x$) ! x.

x,
f"1f"1.

f #x$ ! ln x
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5.4 Exponential Functions: Differentiation and Integration

DEFINITION OF THE NATURAL EXPONENTIAL FUNCTION

The inverse function of the natural logarithmic function is called
the natural exponential function and is denoted by

That is,

if and only if x ! ln y.y ! ex

f"1#x$ ! ex.

f #x$ ! ln x

and Inverse relationshipeln x ! xln#ex$ ! x

3

2

−1

−2

321−2 −1

y

x

f (x) = ln x

f −1(x) = ex

The inverse function of the natural logarithmic
function is the natural exponential function.
Figure 5.19

THE NUMBER e

The symbol e was first used by mathematician
Leonhard Euler to represent the base of 
natural logarithms in a letter to another
mathematician, Christian Goldbach, in 1731.



EXAMPLE 2 Solving a Logarithmic Equation

Solve 

Solution To convert from logarithmic form to exponential form, you can exponentiate
each side of the logarithmic equation.

Write original equation.

Exponentiate each side.

Apply inverse property.

Solve for 

Use a calculator. ■

The familiar rules for operating with rational exponents can be extended to the
natural exponential function, as shown in the following theorem.

In Section 5.3, you learned that an inverse function shares many properties
with So, the natural exponential function inherits the following properties from the
natural logarithmic function (see Figure 5.20).

f.
f"1

x - 75.707

x.x ! 1
2#e5 $ 3$

 2x " 3 ! e5

eln#2x"3$ ! e5

 ln#2x " 3$ ! 5

ln#2x " 3$ ! 5.
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THEOREM 5.10 OPERATIONS WITH EXPONENTIAL FUNCTIONS

Let and be any real numbers.

1.

2.
ea

eb ! ea"b

eaeb ! ea$b

ba

PROOF To prove Property 1, you can write

Because the natural logarithmic function is one-to-one, you can conclude that

The proof of the other property is given in Appendix A. ■

eaeb ! ea$b.

! ln#ea$b$.
! a $ b

 ln#eaeb$ ! ln#ea$ $ ln#eb$

PROPERTIES OF THE NATURAL EXPONENTIAL FUNCTION

1. The domain of is and the range is 

2. The function is continuous, increasing, and one-to-one on its entire
domain.

3. The graph of is concave upward on its entire domain.

4. and lim
x→%

ex ! %lim
x→"%

ex ! 0

f #x$ ! ex

f #x$ ! ex

#0, %$.#"%, %$,f #x$ ! ex

x
−1−2

1

1

2

3

(0, 1)

))−2, 1
e2

))−1, 1
e

y = ex

(1, e)

y

The natural exponential function is increasing,
and its graph is concave upward.
Figure 5.20



Derivatives of Exponential Functions
One of the most intriguing (and useful) characteristics of the natural exponential func-
tion is that it is its own derivative. In other words, it is a solution to the differential
equation This result is stated in the next theorem.

EXAMPLE 3 Differentiating Exponential Functions

a.

b.

EXAMPLE 4 Locating Relative Extrema

Find the relative extrema of 

Solution The derivative of is given by

Product Rule

Because is never 0, the derivative is 0 only when Moreover, by the First
Derivative Test, you can determine that this corresponds to a relative minimum, as
shown in Figure 5.21. Because the derivative is defined for all 
there are no other critical points. ■

x,f'#x$ ! ex#x $ 1$

x ! "1.ex

! ex#x $ 1$.
f'#x$ ! x#ex$ $ ex#1$

f

f #x$ ! xex.

u ! "
3
x

d
dx

(e"3"x) ! eu du
dx

! & 3
x2'e"3"x !

3e"3"x

x2

u ! 2x " 1
d
dx

(e2x"1) ! eu du
dx

! 2e2x"1

y' ! y.
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THEOREM 5.11 DERIVATIVES OF THE NATURAL EXPONENTIAL FUNCTION

Let be a differentiable function of 

1.

2.
d
dx

(eu) ! eu du
dx

d
dx

(ex) ! ex

x.u

PROOF To prove Property 1, use the fact that and differentiate each side
of the equation.

Definition of exponential function

Differentiate each side with respect to 

The derivative of follows from the Chain Rule. ■eu

d
dx

(ex) ! ex

1
ex

d
dx

(ex) ! 1

x.
d
dx

(ln ex) !
d
dx

(x)

 ln ex ! x

ln ex ! x,

NOTE You can interpret this theorem geometrically by saying that the slope of the graph of
at any point is equal to the coordinate of the point. ■y-#x, ex$f #x$ ! ex

x

1

1

2

3

f (x) = xex

Relative minimum
(−1, −e−1)

y

The derivative of changes from negative to
positive at 
Figure 5.21

x ! "1.
f

■ FOR FURTHER INFORMATION To
find out about derivatives of exponential
functions of order 1/2, see the article 
“A Child’s Garden of Fractional
Derivatives” by Marcia Kleinz and
Thomas J. Osler in The College
Mathematics Journal. To view this article,
go to the website www.matharticles.com.



EXAMPLE 5 The Standard Normal Probability Density Function

Show that the standard normal probability density function

has points of inflection when 

Solution To locate possible points of inflection, find the values for which the 
second derivative is 0.

Write original function.

First derivative

Product Rule

Second derivative

So, when and you can apply the techniques of Chapter 3 to
conclude that these values yield the two points of inflection shown in Figure 5.22.

■

EXAMPLE 6 Shares Traded

The numbers of shares traded (in millions) on the New York Stock Exchange from
1990 through 2005 can be modeled by

where represents the year, with corresponding to 1990. At what rate was the
number of shares traded changing in 2000? (Source: New York Stock Exchange, Inc.)

Solution The derivative of the given model is

By evaluating the derivative when you can conclude that the rate of change in
2000 was about

37,941 million shares per year.

The graph of this model is shown in Figure 5.23. ■

t ! 10,

- 6828e0.1715t.

y' ! #0.1715$#39,811$e0.1715t

t ! 0t

y ! 39,811e0.1715t

y

x ! ±1,f & #x$ ! 0

!
1

*2)
#e"x2"2$#x2 " 1$

f & #x$ !
1

*2)
(#"x$#"x$e"x2"2 $ #"1$e"x2"2)

f'#x$ !
1

*2)
#"x$e"x2"2

f #x$ !
1

*2)
e"x2"2

x-

x ! ±1.

f #x$ !
1

*2)
e"x2"2
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x
1 2−1−2

0.1

0.2

0.3

Two points of
inflection

1
2π

f(x) = e−x2/2

y

The bell-shaped curve given by a standard
normal probability density function
Figure 5.22

NOTE The general form of a normal probability density function (whose mean is 0) is 
given by

where is the standard deviation ( is the lowercase Greek letter sigma). This “bell-shaped
curve” has points of inflection when ■x ! ±..

..

f #x$ !
1

.*2)
e"x2"2.2

Sh
ar

es
 tr

ad
ed

 (i
n 

m
ill

io
ns

)

Year (0 ↔ 1990)

t = 10

t
12 15

50,000

100,000

150,000

200,000

250,000

350,000

450,000

550,000

500,000

400,000

300,000

3 6 9

y = 39,811e0.1715t

y

Figure 5.23



Integrals of Exponential Functions
Each differentiation formula in Theorem 5.11 has a corresponding integration formula.

EXAMPLE 7 Integrating Exponential Functions

Find

Solution If you let then 

Multiply and divide by 3.

Substitute:

Apply Exponential Rule.

Back-substitute. ■

EXAMPLE 8 Integrating Exponential Functions

Find

Solution If you let then or 

Regroup integrand.

Substitute:

Constant Multiple Rule

Apply Exponential Rule.

Back-substitute. ■! "
5
2

e"x2$C

! "
5
2

eu $ C

! "
5
2 %eu du

u ! "x2.! % 5eu &"du
2 '

% 5xe"x 2dx ! % 5e"x2#x dx$

x dx ! "du"2.du ! "2x dxu ! "x2,

% 5xe"x2 dx.

!
e3x$1

3
$ C

!
1
3

eu $ C

u ! 3x $ 1.!
1
3%eu du

%e3x$1dx !
1
3%e3x$1#3$ dx

du ! 3 dx.u ! 3x $ 1,

%e3x$1 dx.
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THEOREM 5.12 INTEGRATION RULES FOR EXPONENTIAL FUNCTIONS

Let be a differentiable function of 

1. 2. % eu du ! eu $ C% ex dx ! ex $ C

x.u

NOTE In Example 7, the missing constant factor 3 was introduced to create 
However, remember that you cannot introduce a missing variable factor in the integrand. For
instance,

■% e"x2 dx #
1
x % e"x2 #x dx$.

du ! 3 dx.



EXAMPLE 9 Integrating Exponential Functions

a.

b.

EXAMPLE 10 Finding Areas Bounded by Exponential Functions

Evaluate each definite integral.

a. b. c.

Solution

a. See Figure 5.24(a).

b. See Figure 5.24(b).

c. See Figure 5.24(c).

(a) (b) (c)
Figure 5.24 ■

x

1

−1

y = ex cos(ex)

y

x
1

1
ex

1 + exy =

y

x
1

1 y = e−x

y

- 0.482

! sin 1 " sin#e"1$

%0

"1
(ex cos#ex$) dx ! sin#ex$,

0

"1

- 0.620

! ln#1 $ e$ " ln 2

%1

0

ex

1 $ ex dx ! ln#1 $ ex$,
1

0

- 0.632

! 1 "
1
e

! "e"1 " #"1$

%1

0
e"x dx ! "e"x,

1

0

%0

"1
(ex cos#ex$) dx%1

0

ex

1 $ ex dx%1

0
e"x dx

! "ecos x $ C

u ! cos x% sin x ecos x dx ! "%ecos x #"sin x dx$

dueu

! "e1"x $ C

u !
1
x% e1"x

x2 dx ! "%e1"x&" 1
x2' dx

dueu
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In Exercises 1–16, solve for accurate to three decimal places.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–22, sketch the graph of the function.

17. 18.

19. 20.

21. 22.

23. Use a graphing utility to graph and the given function
in the same viewing window. How are the two graphs related?

(a) (b) (c)

24. Use a graphing utility to graph the function. Use the graph to
determine any asymptotes of the function.

(a)

(b)

In Exercises 25–28, match the equation with the correct graph.
Assume that and are positive real numbers. [The graphs are
labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

25. 26.

27. 28.

In Exercises 29–32, illustrate that the functions are inverses of
each other by graphing both functions on the same set of 
coordinate axes.

29. 30.

31. 32.

33. Graphical Analysis Use a graphing utility to graph

and

in the same viewing window. What is the relationship between
and as 

34. Conjecture Use the result of Exercise 33 to make a conjec-
ture about the value of

as

In Exercises 35 and 36, compare the given number with the
number Is the number less than or greater than 

35. (See Exercise 34.)

36.

In Exercises 37 and 38, find an equation of the tangent line to
the graph of the function at the point 

37. (a) (b)

38. (a) (b)

x
−1

1

2

1

(0, 1)

y

x
−1

1

2

1

(0, 1)

y

y ! e"2xy ! e2x

x
−1

1

1

(0, 1)

y

x
−1

1

1

2

(0, 1)

y

y ! e"3xy ! e3x

/0, 10.

1 $ 1 $
1
2

$
1
6

$
1

24
$

1
120

$
1

720
$

1
5040

&1 $
1

1,000,000'
1,000,000

e?e.

x →%.

&1 $
r
x'

x

x → %?gf

g#x$ ! e0.5f #x$ ! &1 $
0.5
x 'x

g#x$ ! 1 $ ln xg#x$ ! ln#x $ 1$
f #x$ ! ex"1f #x$ ! ex " 1

g#x$ ! ln x3g#x$ ! ln*x

f #x$ ! ex"3f #x$ ! e2x

y !
C

1 $ e"axy ! C#1 " e"ax$

y ! Ce"axy ! Ceax

x
1

1

2

2

−1

−1

y

x
1

2

−1

−1−2

y

x

1

1

2

2
−1

−1−2

−2

y

x

1

1

2

2
−1

−1−2

y

Ca

g#x$ !
8

1 $ e"0.5"x

f #x$ !
8

1 $ e"0.5x

q#x$ ! e"x $ 3h#x$ ! "1
2exg#x$ ! ex"2

f #x$ ! ex

y ! e"x"2y ! e"x2

y ! ex"1y ! ex $ 2

y ! 1
2exy ! e"x

ln#x " 2$2 ! 12ln*x $ 2 ! 1

ln 4x ! 1ln#x " 3$ ! 2

ln x2 ! 10ln x ! 2

5000
1 $ e2x ! 2

800
100 " ex"2 ! 50

200e"4x ! 1550e"x ! 30

"6 $ 3e x ! 89 " 2ex ! 7

4ex ! 83ex ! 12

eln 2x ! 12eln x ! 4

x
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In Exercises 39– 60, find the derivative.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

In Exercises 61– 68, find an equation of the tangent line to the
graph of the function at the given point.

61. 62.

63. 64.

65.

66.

67. 68.

In Exercises 69 and 70, use implicit differentiation to find 

69. 70.

In Exercises 71 and 72, find an equation of the tangent line to
the graph of the function at the given point.

71. 72.

In Exercises 73 and 74, find the second derivative of the
function.

73. 74.

In Exercises 75–78, show that the function is a 
solution of the differential equation.

75. 76.

77. 78.

In Exercises 79– 86, find the extrema and the points of inflection
(if any exist) of the function. Use a graphing utility to graph the
function and confirm your results.

79. 80.

81. 82.

83. 84.

85. 86.

87. Area Find the area of the largest rectangle that can be
inscribed under the curve in the first and second
quadrants.

88. Area Perform the following steps to find the maximum area
of the rectangle shown in the figure.

(a) Solve for in the equation 

(b) Use the result in part (a) to write the area as a function of

(c) Use a graphing utility to graph the area function. Use the
graph to approximate the dimensions of the rectangle of
maximum area. Determine the maximum area.

(d) Use a graphing utility to graph the expression for found
in part (a). Use the graph to approximate

and

Use this result to describe the changes in dimensions and
position of the rectangle for 

89. Find a point on the graph of the function such that
the tangent line to the graph at that point passes through the
origin. Use a graphing utility to graph and the tangent line in
the same viewing window.

90. Find the point on the graph of where the normal line to
the curve passes through the origin. (Use Newton’s Method or
the zero or root feature of a graphing utility.)

91. Depreciation The value of an item years after it is
purchased is 

(a) Use a graphing utility to graph the function.

(b) Find the rates of change of with respect to when 
and

(c) Use a graphing utility to graph the tangent lines to the
function when and 

92. Harmonic Motion The displacement from equilibrium of a
mass oscillating on the end of a spring suspended from a 
ceiling is where is the displacement
in feet and is the time in seconds. Use a graphing utility to
graph the displacement function on the interval Find a
value of past which the displacement is less than 3 inches from
equilibrium.

t
(0, 10).

t
yy ! 1.56e"0.22t cos 4.9t,

t ! 5.t ! 1

t ! 5.
t ! 1tV

0 ( t ( 10.V ! 15,000e"0.6286t,
tV

y ! e"x

f

f #x$ ! e2x

x
1

1

2

3

4

4

5 6c c + x

f (x) = 10xe−x

y

0 < x < %.

lim
x→%

c.lim
x→0$

c

c

(Hint: A ! x f #c$)x.
A

f #c$ ! f #c $ x$.c

y ! e"x2

f #x$ ! "2 $ e3x#4 " 2x$g#t$ ! 1 $ #2 $ t$e"t

f #x$ ! xe"xf #x$ ! x2e"x

g#x$ !
1

*2)
e"#x"3$2"2g#x$ !

1
*2)

e"#x"2$2"2

f #x$ !
ex " e"x

2
f #x$ !

ex $ e"x

2

y& " 2y' $ 5y ! 0y& " 2y' $ 3y ! 0

y ! ex#3 cos 2x " 4 sin 2x$y ! ex#cos *2 x $ sin *2 x$
y& " 9y ! 0y& " y ! 0

y ! e3x $ e"3xy ! 4e"x

y ! f /x0

g#x$ ! *x $ ex ln xf #x$ ! #3 $ 2x$e"3x

1 $ ln xy ! ex"y,  #1, 1$xe y $ yex ! 1,  #0, 1$

exy $ x2 " y 2 ! 10xey " 10x $ 3y ! 0

dy/dx.

#1, 0$f #x$ ! e3 ln x,#1, 0$f #x$ ! e"x ln x,

#1, 0$y ! xex " ex,

#1, e$y ! x2ex " 2xex $ 2ex,

#0, 0$y ! ln
ex $ e"x

2
,#"2, 4$y ! ln#e x2$,

#2, 1$y ! e"2x$x2,#1, 1$f #x$ ! e1"x,

F#x$ ! %e2x

0
 ln#t $ 1$ dtF#x$ ! %ln x

)

 cos e t dt

y ! ln exy ! ex#sin x $ cos x$

y !
e2x

e2x $ 1
y !

ex $ 1
ex " 1

y !
ex " e"x

2
y !

2
ex $ e"x

y ! ln&1 $ ex

1 " ex'y ! ln #1 $ e2x$

g#t$ ! e"3"t2g#t$ ! #e"t $ e t$3

y ! x2 e"xy ! x3 ex

y ! xexy ! ex ln x

f #x$ ! 3e1"x2y ! ex"4

y ! e"x2y ! e*x

y ! e"5xf #x$ ! e2x
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93. Modeling Data A meteorologist measures the atmospheric
pressure (in kilograms per square meter) at altitude (in
kilometers). The data are shown below.

(a) Use a graphing utility to plot the points Use the
regression capabilities of the graphing utility to find a 
linear model for the revised data points.

(b) The line in part (a) has the form Write the
equation in exponential form.

(c) Use a graphing utility to plot the original data and graph the
exponential model in part (b).

(d) Find the rate of change of the pressure when and

94. Modeling Data The table lists the approximate values of
a mid-sized sedan for the years 2003 through 2009. The variable

represents the time in years, with corresponding to 2003.

(a) Use the regression capabilities of a graphing utility to fit
linear and quadratic models to the data. Plot the data and
graph the models.

(b) What does the slope represent in the linear model in 
part (a)?

(c) Use the regression capabilities of a graphing utility to fit an
exponential model to the data.

(d) Determine the horizontal asymptote of the exponential
model found in part (c). Interpret its meaning in the context
of the problem.

(e) Find the rate of decrease in the value of the sedan when
and using the exponential model.

Linear and Quadratic Approximations In Exercises 95 and 96,
use a graphing utility to graph the function. Then graph

and

in the same viewing window. Compare the values of and 
and their first derivatives at 

95. 96.

Stirling’s Formula For large values of 

can be approximated by Stirling’s Formula,

In Exercises 97 and 98, find the exact value of and then
approximate using Stirling’s Formula.

97. 98.

In Exercises 99–116, find the indefinite integral.

99. 100.

101. 102.

103. 104.

105. 106.

107. 108.

109. 110.

111. 112.

113. 114.

115. 116.

In Exercises 117–126, evaluate the definite integral. Use a
graphing utility to verify your result.

117. 118.

119. 120.

121. 122.

123. 124.

125. 126.

Differential Equations In Exercises 127 and 128, solve the
differential equation.

127. 128.

Differential Equations In Exercises 129 and 130, find the
particular solution that satisfies the initial conditions.

129. 130.

f #0$ ! 1
4, f'#0$ ! 1

2f #0$ ! 1, f'#0$ ! 0

f &#x$ ! sin x $ e2x,f &#x$ ! 1
2#ex $ e"x$,

dy
dx

! #ex " e"x$2dy
dx

! xeax2

%)"2

)"3
esec 2x sec 2x tan 2x dx%)"2

0
esin) x cos ) x dx

%1

0

ex

5 " ex dx%3

0

2e2x

1 $ e2x dx

%*2

0
xe"#x2"2$ dx%3

1

e3"x

x2 dx

%0

"2
x2 ex3"2 dx%1

0
xe"x2 dx

%4

3
e3"x dx%1

0
e"2x dx

% ln#e2x"1$ dx% e"x tan#e"x$ dx

% e2x $ 2ex $ 1
ex dx% 5 " ex

e2x dx

% 2ex " 2e"x

#ex $ e"x$2 dx% ex $ e"x

ex " e"x dx

% ex " e"x

ex $ e"x dx% ex*1 " ex dx

% e2x

1 $ e2x dx% e"x

1 $ e"x dx

% e1"x2

x3 dx% e*x

*x
dx

% ex#ex $ 1$2 dx% x2 ex3 dx

% e1"3x dx% e 2x"1 dx

% e"x 4#"4x3$ dx% e5x#5$ dx

n ! 15n ! 12

n!
n!,

n! y &n
e'

n
*2#n.

n! ! 1 / 2 / 3 / 4 .  .  . /n " 10 / n

n,

f #x$ ! ex"2f #x$ ! ex

x ! 0.
P2P1,f,

P2/x0 ! f /00 1 f'/00/x " 00 1 1
2 f& /00/x " 0$2

P1/x0 ! f /00 1 f'/00/x " 00

t ! 8t ! 4

t ! 3t

V

h ! 18.
h ! 5

ln P ! ah $ b.

#h, ln P$.

hP
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h 0 5 10 15 20

P 10,332 5583 2376 1240 517

t 3 4 5 6

V $23,046 $20,596 $18,851 $17,001

t 7 8 9

V $15,226 $14,101 $12,841



Slope Fields In Exercises 131 and 132, a differential equation,
a point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

131. 132.

Area In Exercises 133–136, find the area of the region bounded
by the graphs of the equations. Use a graphing utility to graph the
region and verify your result.

133.

134.

135.

136.

Numerical Integration In Exercises 137 and 138, approximate
the integral using the Midpoint Rule, the Trapezoidal Rule, and
Simpson’s Rule with Use a graphing utility to verify
your results.

137. 138.

139. Probability A car battery has an average lifetime of 
48 months with a standard deviation of 6 months. The battery
lives are normally distributed. The probability that a given
battery will last between 48 months and 60 months is

Use the integration capabilities of
a graphing utility to approximate the integral. Interpret the
resulting probability.

140. Probability The median waiting time (in minutes) for people
waiting for service in a convenience store is given by the 
solution of the equation Solve the equation.

141. Horizontal Motion The position function of a particle 
moving along the -axis is where 
and are positive constants.

(a) During what times is the particle closest to the origin?

(b) Show that the acceleration of the particle is proportional
to the position of the particle. What is the constant of 
proportionality?

142. Modeling Data A valve on a storage tank is opened for 
4 hours to release a chemical in a manufacturing process. The
flow rate (in liters per hour) at time (in hours) is given in
the table.

Table for 142

(a) Use the regression capabilities of a graphing utility to find
a linear model for the points Write the resulting
equation of the form in exponential form.

(b) Use a graphing utility to plot the data and graph the
exponential model.

(c) Use the definite integral to approximate the number of
liters of chemical released during the 4 hours.

147. Given for it follows that 

Perform this integration to derive the inequality 
for

149. Find, to three decimal places, the value of such that 
(Use Newton’s Method or the zero or root feature of a
graphing utility.)

150. Find the value of such that the area bounded by the
-axis, and is 

151. Verify that the function

increases at a maximum rate when 

152. Let

(a) Graph on and show that is strictly decreasing on

(b) Show that if then 

(c) Use part (b) to show that e) > ) e.

AB > BA.e ( A < B,

#e, %$.
f#0, %$f

f #x$ !
ln x

x
.

y ! L"2.

a > 0,  b > 0,  L > 0y !
L

1 $ ae"x"b ,

8
3.x ! ax ! "a,x

y ! e"x,a

e"x ! x.x

x , 0.
ex , 1 $ x

% x

0
et dt , %x

0
 1 dt.x , 0,ex , 1

ln R ! at $ b
#t, ln R$.

tR

t

k
B,A,x#t) ! Aekt $ Be"ktx

!x
0 0.3e"0.3t dt ! 1

2.

0.0665 !60
48 e"0.0139#t"48$2 dt.

!2
0  2xe"x dx!4

0 *x ex dx

n ! 12.

y ! e"2x $ 2, y ! 0, x ! 0, x ! 2

y ! xe"x2"4, y ! 0, x ! 0, x ! *6

y ! e"x, y ! 0, x ! a, x ! b

y ! ex, y ! 0, x ! 0, x ! 5

x

−4

−4 4

4

y

x
−2

−2

5

5

y

&0, "
3
2'dy

dx
! xe"0.2x2,#0, 1$dy

dx
! 2e"x"2,
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t 0 1 2 3 4

R 425 240 118 71 36

143. In your own words, state the properties of the natural
exponential function.

144. Is there a function such that If so, identify it.

145. Without integrating, state the integration formula you can
use to integrate each of the following.

(a) (b)

146. Consider the function 

(a) Use a graphing utility to graph 

(b) Write a short paragraph explaining why the graph has
a horizontal asymptote at and why the function
has a nonremovable discontinuity at x ! 0.

y ! 1

f.

f #x$ !
2

1 $ e1"x .

%xex2 dx% e x

e x $ 1
dx

f #x$ ! f'#x$?f

WRITING ABOUT CONCEPTS

148. Describe the relationship between the graphs of
and g#x$ ! e x.f #x$ ! ln x

CAPSTONE



■ Define exponential functions that have bases other than e.
■ Differentiate and integrate exponential functions that have bases other than e.
■ Use exponential functions to model compound interest and exponential growth.

Bases Other than e
The base of the natural exponential function is This “natural” base can be used to
assign a meaning to a general base 

These functions obey the usual laws of exponents. For instance, here are some
familiar properties.

1. 2.

3. 4.

When modeling the half-life of a radioactive sample, it is convenient to use as
the base of the exponential model. (Half-life is the number of years required for half
of the atoms in a sample of radioactive material to decay.)

EXAMPLE 1 Radioactive Half-Life Model

The half-life of carbon-14 is about 5715 years. A sample contains 1 gram of carbon-14.
How much will be present in 10,000 years?

Solution Let represent the present time and let represent the amount (in
grams) of carbon-14 in the sample. Using a base of you can model by the 
equation

Notice that when the amount is reduced to half of the original amount.

gram

When the amount is reduced to a quarter of the original amount, and so
on. To find the amount of carbon-14 after 10,000 years, substitute 10,000 for 

gram

The graph of is shown in Figure 5.25. ■y

- 0.30

y ! &1
2'

10,000"5715

t.
t ! 11,430,

y ! &1
2'

5715"5715

!
1
2

t ! 5715,

y ! &1
2'

t"5715

.

y1
2,
yt ! 0

1
2

#ax$y ! axyax

ay ! ax"y

axay ! ax$ya0 ! 1

a.
e.
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5.5 Bases Other Than e and Applications

DEFINITION OF EXPONENTIAL FUNCTION TO BASE a

If is a positive real number and is any real number, then the
exponential function to the base a is denoted by and is defined by

If then is a constant function.y ! 1x ! 1a ! 1,

ax ! e#ln a$x.

ax
x#a # 1$a

t

C
ar

bo
n-

14
 (i

n 
gr

am
s)

Time (in years)
2,000 4,000 6,000 8,000 10,000

0.2

0.4

0.6

0.8

1.0

1.2

(5715, 0.50)

(10,000, 0.30)

y = 1
2

t/5715( )

y

The half-life of carbon-14 is about 5715
years.
Figure 5.25



Logarithmic functions to bases other than can be defined in much the same way
as exponential functions to other bases are defined.

Logarithmic functions to the base have properties similar to those of the
natural logarithmic function given in Theorem 5.2. (Assume and are positive 
numbers and is rational.)

1. Log of 1

2. Log of a product

3. Log of a power

4. Log of a quotient

From the definitions of the exponential and logarithmic functions to the base it
follows that and are inverse functions of each other.

The logarithmic function to the base 10 is called the common logarithmic
function. So, for common logarithms, if and only if 

EXAMPLE 2 Bases Other Than e

Solve for in each equation.

a. b.

Solution

a. To solve this equation, you can
apply the logarithmic function to the
base 3 to each side of the equation.

■x ! "4

x ! log3 3"4

log3 3x ! log3
1
81

 3x !
1

81

log2 x ! "43x !
1

81

x

x ! log10 y.y ! 10x

g#x$ ! loga xf#x$ ! ax
a,

loga
x
y

! loga x " loga y

loga xn ! n loga x

loga xy ! loga x $ loga y

loga 1 ! 0

n
yx

a

e
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DEFINITION OF LOGARITHMIC FUNCTION TO BASE a

If is a positive real number and is any positive real number, then
the logarithmic function to the base a is denoted by and is defined as

loga x !
1

ln a
ln x.

loga x
x#a # 1$a

PROPERTIES OF INVERSE FUNCTIONS

1. if and only if 

2. for

3. for all xloga ax ! x,

x > 0alogax ! x,

x ! loga yy ! ax

b. To solve this equation, you can apply
the exponential function to the base 2
to each side of the equation.

x !
1

16

x !
1
24

2log2 x ! 2"4

log2 x ! "4

NOTE In precalculus, you learned that
is the value to which must be

raised to produce This agrees with the
definition given here because

! x.

! e ln x

! e #ln a"ln a$ln x

! #e ln a$#1"ln a$ln x

a loga x ! a#1"ln a$ln x

x.
aloga x



Differentiation and Integration
To differentiate exponential and logarithmic functions to other bases, you have three
options: (1) use the definitions of and and differentiate using the rules for the
natural exponential and logarithmic functions, (2) use logarithmic differentiation, or
(3) use the following differentiation rules for bases other than 

EXAMPLE 3 Differentiating Functions to Other Bases

Find the derivative of each function.

a.
b.
c.

Solution

a.

b.

Try writing as and differentiating to see that you obtain the same result.

c. ■y' !
d
dx

(log10 cos x) !
"sin x

#ln 10$cos x
! "

1
ln 10

 tan x

8x23x

y' !
d
dx

(23x) ! #ln 2$23x#3$ ! #3 ln 2$23x

y' !
d
dx

(2x) ! #ln 2$2x

y ! log10 cos x

y ! 23x

y ! 2x

e.

loga xax
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THEOREM 5.13 DERIVATIVES FOR BASES OTHER THAN e

Let be a positive real number and let be a differentiable function of 

1. 2.

3. 4.
d
dx

(loga u) !
1

#ln a$u
du
dx

d
dx

(loga x) !
1

#ln a$x

d
dx

(au) ! #ln a$au du
dx

d
dx

(ax) ! #ln a$ax

x.u#a # 1$a

PROOF By definition, So, you can prove the first rule by letting
and differentiating with base to obtain

To prove the third rule, you can write

The second and fourth rules are simply the Chain Rule versions of the first and third
rules. ■

d
dx

(loga x) !
d
dx +

1
ln a

ln x, !
1

ln a &1
x' !

1
#ln a$x.

d
dx

(ax) !
d
dx

(e#ln a$x) ! eu du
dx

! e#ln a$x#ln a$ ! #ln a$ax.

eu ! #ln a$x
ax ! e#ln a$x.

NOTE These differentiation rules are similar to those for the natural exponential function and
the natural logarithmic function. In fact, they differ only by the constant factors and

This points out one reason why, for calculus, is the most convenient base. ■e1"ln a.
ln a



Occasionally, an integrand involves an exponential function to a base other than
When this occurs, there are two options: (1) convert to base using the formula

and then integrate, or (2) integrate directly, using the integration formula

(which follows from Theorem 5.13).

EXAMPLE 4 Integrating an Exponential Function to Another Base

Find

Solution

■

When the Power Rule, was introduced in Chapter 2, the
exponent was required to be a rational number. Now the rule is extended to cover
any real value of Try to prove this theorem using logarithmic differentiation.

The next example compares the derivatives of four types of functions. Each 
function uses a different differentiation formula, depending on whether the base and
the exponent are constants or variables.

EXAMPLE 5 Comparing Variables and Constants

a. Constant Rule

b. Exponential Rule

c. Power Rule

d. Logarithmic differentiation

■y' ! y#1 $ ln x$ ! xx#1 $ ln x$

y'
y

! x&1
x' $ #ln x$#1$ ! 1 $ ln x

 ln y ! x ln x

 ln y ! ln xx

y ! xx

d
dx

(xe) ! exe"1

d
dx

(ex) ! ex

d
dx

(ee) ! 0

n.
n

Dx (xn] ! nxn"1,

%2x dx !
1

ln 2
2x $ C

! 2x dx.

ax ! e#ln a$x
ee.
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%ax dx ! & 1
ln a'ax $ C

THEOREM 5.14 THE POWER RULE FOR REAL EXPONENTS

Let be any real number and let be a differentiable function of 

1.

2.
d
dx

(un) ! nun"1 du
dx

d
dx

(xn) ! nxn"1

x.un

NOTE Be sure you see that there is no
simple differentiation rule for calculating
the derivative of In general, if

you need to use logarithmic
differentiation.
y ! u#x$v#x$,

y ! xx.



Applications of Exponential Functions
Suppose dollars is deposited in an account at an annual interest rate (in decimal
form). If interest accumulates in the account, what is the balance in the account at the
end of 1 year? The answer depends on the number of times the interest is
compounded according to the formula

For instance, the result for a deposit of $1000 at 8% interest compounded times a
year is shown in the upper table at the left.

As increases, the balance approaches a limit. To develop this limit, use 
the following theorem. To test the reasonableness of this theorem, try evaluating

for several values of as shown in the lower table at the left. (A proof
of this theorem is given in Appendix A.)

Now, let’s take another look at the formula for the balance in an account in
which the interest is compounded times per year. By taking the limit as approaches
infinity, you obtain

Take limit as 

Rewrite.

Let Then as 

Apply Theorem 5.15.

This limit produces the balance after 1 year of continuous compounding. So, for a
deposit of $1000 at 8% interest compounded continuously, the balance at the end of
1 year would be

These results are summarized below.

- $1083.29.

A ! 1000e0.08

! Per.

n →%.x →%x ! n"r.! P+ lim
x→% &1 $

1
x'

x

,
r

! P lim
n→% +&1 $

1
n"r'

n"r

,
r

n →%.A ! lim
n→%

P&1 $
r
n'

n

nn
A

x,(#x $ 1$"x)x

An

n

A ! P&1 $
r
n'

n

.

n

rP
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THEOREM 5.15 A LIMIT INVOLVING e

lim
x→% &1 $

1
x'

x

! lim
x→% &x $ 1

x 'x

! e

SUMMARY OF COMPOUND INTEREST FORMULAS

Let amount of deposit, number of years, balance after years,
annual interest rate (decimal form), and number of compoundings per

year.

1. Compounded times per year:

2. Compounded continuously: A ! Pert

A ! P&1 $
r
n'

nt

n

n !r !
tA !t !P !

n A

1 $1080.00

2 $1081.60

4 $1082.43

12 $1083.00

365 $1083.28

x &x 1 1
x '

x

10 2.59374

100 2.70481

1000 2.71692

10,000 2.71815

100,000 2.71827

1,000,000 2.71828
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The balance in a savings account grows 
exponentially.
Figure 5.26
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EXAMPLE 6 Comparing Continuous, Quarterly, and Monthly Compounding

A deposit of $2500 is made in an account that pays an annual interest rate of 5%.
Find the balance in the account at the end of 5 years if the interest is compounded (a)
quarterly, (b) monthly, and (c) continuously.

Solution

a. Compounded quarterly

b. Compounded monthly

c. Compounded continuously

Figure 5.26 shows how the balance increases over the five-year period. Notice that the
scale used in the figure does not graphically distinguish among the three types of
exponential growth in (a), (b), and (c).

EXAMPLE 7 Bacterial Culture Growth

A bacterial culture is growing according to the logistic growth function

where is the weight of the culture in grams and is the time in hours. Find the weight
of the culture after (a) 0 hours, (b) 1 hour, and (c) 10 hours. (d) What is the limit as 
approaches infinity?

Solution

a. When

b. When

c. When

d. Finally, taking the limit as approaches infinity, you obtain

The graph of the function is shown in Figure 5.27. ■

lim
t→%

1.25
1 $ 0.25e"0.4t !

1.25
1 $ 0

! 1.25 grams.

t

- 1.244 grams.

y !
1.25

1 $ 0.25e"0.4#10$t ! 10,

- 1.071 grams.

y !
1.25

1 $ 0.25e"0.4#1$t ! 1,

! 1 gram.

y !
1.25

1 $ 0.25e"0.4#0$t ! 0,

t
ty

t , 0y !
1.25

1 $ 0.25e"0.4t,

- $3210.06! 2500e0.25

A ! Pert ! 2500(e0.05#5$)

- $3208.40

- 2500#1.0041667$60

A ! P&1 $
r
n'

nt

! 2500&1 $
0.05
12 '12#5$

- $3205.09

! 2500#1.0125$20

A ! P&1 $
r
n'

nt

! 2500&1 $
0.05

4 '4#5$



In Exercises 1– 4, evaluate the expression without using a
calculator.

1. 2.

3. 4.

In Exercises 5–8, write the exponential equation as a logarithmic
equation or vice versa.

5. (a) 6. (a)

(b) (b)

7. (a) 8. (a)

(b) (b)

In Exercises 9–14, sketch the graph of the function by hand.

9. 10.

11. 12.

13. 14.

In Exercises 15–18, match the function with its graph. [The
graphs are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

15. 16.

17. 18.

In Exercises 19–24, solve for or 

19. (a) 20. (a)

(b) (b)

21. (a) 22. (a)

(b) (b)

23. (a)

(b)

24. (a)

(b)

In Exercises 25–34, solve the equation accurate to three decimal
places.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

In Exercises 35–38, use a graphing utility to graph the function
and approximate its zero(s) accurate to three decimal places.

35.

36.

37.

38.

In Exercises 39 and 40, illustrate that the functions are inverse
functions of each other by sketching their graphs on the same
set of coordinate axes.

39. 40.

In Exercises 41– 62, find the derivative of the function. (Hint: In
some exercises, you may find it helpful to apply logarithmic
properties before differentiating.)

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

In Exercises 63–66, find an equation of the tangent line to the
graph of the function at the given point.

63. 64.

65. 66. #5, 1$y ! log10 2x,#27, 3$y ! log3 x,

#2, 1$y ! 5x"2,#"1, 2$y ! 2"x,

f #t$ ! t 3"2 log2 *t $ 1g#t$ !
10 log4 t

t

g#x$ ! log5
4

x2*1 " x
h#x$ ! log3

x*x " 1
2

y ! log10
x2 " 1

x
f #x$ ! log2

x2

x " 1

f #x$ ! log2
3*2x $ 1y ! log5 *x2 " 1

g#t$ ! log2#t2 $ 7$3h#t$ ! log5#4 " t$2

y ! log3#x2 " 3x$y ! log4#5x $ 1)

g#0$ ! 5"0"2 sin 20h#-$ ! 2"- cos )-

f #t$ !
32t

t
g#t$ ! t 22t

y ! x#6"2x$f #x$ ! x 9x

y ! 72x"1y ! 5"4x

f #x$ ! 32xf #x$ ! 4x

g#x$ ! log3 xg#x$ ! log4 x

f #x$ ! 3xf #x$ ! 4x

g#x$ ! 1 " 2 log10(x#x " 3$)
h#s$ ! 32 log10#s " 2$ $ 15

f #t$ ! 300#1.007512t$ " 735.41

g#x$ ! 6#21"x$ " 25

log5*x " 4 ! 3.2log3 x2 ! 4.5

log10#t " 3$ ! 2.6log2#x " 1$ ! 5

&1 $
0.10
365 '

365t
! 2&1 $

0.09
12 '12t

! 3

3#5x"1$ ! 8623"z ! 625

56x ! 832032x ! 75

log10#x $ 3$ " log10 x ! 1

log3 x $ log3#x " 2$ ! 1

3x $ 5 ! log2 64

x2 " x ! log5 25

logb 125 ! 3log2 x ! "4

logb 27 ! 3log3 x ! "1

log6 36 ! xlog10 0.1 ! x

log3
1
81 ! xlog10 1000 ! x

b.x

f #x) ! 3x"1f #x$ ! 3x " 1

f #x) ! 3"xf #x$ ! 3x

x

y

−2−4 2 4
−2

4

2

6

x

y

−2−4 2 4
−2

4

6

x

y

2 4
−2

2

4

6

x

y

−2−4 2 4
−2

2

4

6

y ! 3".x.h#x$ ! 5x"2

y ! 2x2y ! #1
3$x

y ! 3x"1y ! 3x

491"2 ! 7log0.5 8 ! "3

log3
1
9 ! "2log10 0.01 ! "2

163"4 ! 83"1 ! 1
3

272"3 ! 923 ! 8

loga
1
a

log7 1

log27 9log2
1
8
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5.5 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.



In Exercises 67–70, use logarithmic differentiation to find 

67. 68.

69. 70.

In Exercises 71–74, find an equation of the tangent line to the
graph of the function at the given point.

71. 72.

73. 74.

In Exercises 75– 82, find the integral.

75. 76.

77. 78.

79. 80.

81. 82.

In Exercises 83– 86, evaluate the integral.

83. 84.

85. 86.

Area In Exercises 87 and 88, find the area of the region
bounded by the graphs of the equations.

87.

88.

Slope Fields In Exercises 89 and 90, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

89. 90.
95. Inflation If the annual rate of inflation averages 5% over the

next 10 years, the approximate cost of goods or services 
during any year in that decade is

where is the time in years and is the present cost.

(a) The price of an oil change for your car is presently $24.95.
Estimate the price 10 years from now.

(b) Find the rates of change of with respect to when 
and

(c) Verify that the rate of change of is proportional to 
What is the constant of proportionality?

C.C

t ! 8.
t ! 1tC

Pt

C#t$ ! P#1.05$t

C

x
10

−2

6

4

2

y

−4

−4 4

4

y

x

#), 2$dy
dx

! esin x cos x,#0, 1
2$dy

dx
! 0.4x"3,

y ! 3cos x sin x, y ! 0, x ! 0, x ! )

y ! 3x, y ! 0, x ! 0, x ! 3

%e

1
#6x " 2x$ dx%1

0
#5x " 3x$ dx

%2

"2
 4x"2 dx%2

"1
 2x dx

% 2sin x cos x dx% 32x

1 $ 32x dx

% #3 " x$7#3"x$2 dx% x#5"x 2$dx

% #x3 $ 3"x$ dx% #x2 $ 2"x$ dx

% 5"x dx% 3x dx

#1, 1$y ! x1"x,#e, 1$y ! #ln x$cos x,

&)
2

, 1'y ! #sin x$2x,&)
2

,
)
2'y ! xsin x,

y ! #1 $ x$1"xy ! #x " 2$x$1

y ! xx"1y ! x2"x

dy/dx.
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91. Consider the function 

(a) What is the domain of

(b) Find

(c) If is a real number between 1000 and 10,000,
determine the interval in which will be found.

(d) Determine the interval in which will be found if
is negative.

(e) If is increased by one unit, must have been
increased by what factor?

(f) Find the ratio of to given that and

92. Order the functions

and

from the one with the greatest rate of growth to the one with
the least rate of growth for large values of 

93. Find the derivative of each function, given that is 
constant.

(a) (b)

(c) (d) y ! aay ! xx

y ! axy ! xa

a

x.

k#x$ ! 2xh#x$ ! x2,g#x$ ! xx,f #x$ ! log2 x,

f #x2$ ! n.
f #x1$ ! 3nx2x1

xf #x$

f #x$x

f #x$
x

f "1.

f ?

f #x$ ! log10 x.

WRITING ABOUT CONCEPTS

94. The table of values below was obtained by evaluating a
function. Determine which of the statements may be true
and which must be false, and explain why.

(a) is an exponential function of 

(b) is a logarithmic function of 

(c) is an exponential function of 

(d) is a linear function of x.y

y.x

x.y

x.y

CAPSTONE

x 1 2 8

y 0 1 3



96. Depreciation After years, the value of a car purchased for
$25,000 is

(a) Use a graphing utility to graph the function and determine
the value of the car 2 years after it was purchased.

(b) Find the rates of change of with respect to when 
and

(c) Use a graphing utility to graph and determine the 
horizontal asymptote of Interpret its meaning in the
context of the problem.

Compound Interest In Exercises 97–100, complete the table by
determining the balance for dollars invested at rate for 
years and compounded times per year.

97.

years

98.

years

99.

years

100.

years

Compound Interest In Exercises 101–104, complete the table by
determining the amount of money (present value) that should
be invested at rate to produce a balance of $100,000 in years.

101.

Compounded continuously

102.

Compounded continuously

103.

Compounded monthly

104.

Compounded daily

105. Compound Interest Assume that you can earn 6% on an
investment, compounded daily. Which of the following
options would yield the greatest balance after 8 years?

(a) $20,000 now

(b) $30,000 after 8 years

(c) $8000 now and $20,000 after 4 years

(d) $9000 now, $9000 after 4 years, and $9000 after 8 years

106. Compound Interest Consider a deposit of $100 placed in an
account for 20 years at compounded continuously. Use a
graphing utility to graph the exponential functions describing
the growth of the investment over the 20 years for the 
following interest rates. Compare the ending balances for the
three rates.

(a)

(b)

(c)

107. Timber Yield The yield (in millions of cubic feet per acre)
for a stand of timber at age is

where is measured in years.

(a) Find the limiting volume of wood per acre as approaches
infinity.

(b) Find the rates at which the yield is changing when 
years and years.

108. Learning Theory In a group project in learning theory, a
mathematical model for the proportion of correct responses
after trials was found to be

(a) Find the limiting proportion of correct responses as 
approaches infinity.

(b) Find the rates at which is changing after trials and
trials.

109. Forest Defoliation To estimate the amount of defoliation
caused by the gypsy moth during a year, a forester counts the
number of egg masses on of an acre the preceding fall. The
percent of defoliation is approximated by

where is the number of egg masses in thousands. (Source:
USDA Forest Service)

(a) Use a graphing utility to graph the function.

(b) Estimate the percent of defoliation if 2000 egg masses are
counted.

(c) Estimate the number of egg masses that existed if you
observe that approximately of a forest is defoliated.

(d) Use calculus to estimate the value of for which is
increasing most rapidly.

yx

2
3

x

y !
300

3 $ 17e"0.0625x

y

1
40

n ! 10
n ! 3P

n

P !
0.86

1 $ e"0.25n.

n
P

t ! 60
t ! 20

t

t

V ! 6.7e#"48.1$"t

t
V

r ! 6%

r ! 5%

r ! 3%

r%

r ! 7%

r ! 5%

r ! 6%

r ! 5%

tr
P

t ! 25

r ! 7%

P ! $5000

t ! 30

r ! 5%

P ! $1000

t ! 20

r ! 6%

P ! $2500

t ! 10

r ! 31
2%

P ! $1000

n
trPA

V'#t$.
V'#t$

t ! 4.
t ! 1tV

V#t) ! 25,000#3
4$t

.

t
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110. Population Growth A lake is stocked with 500 fish, and the
population increases according to the logistic curve

where is measured in months.

(a) Use a graphing utility to graph the function.

(b) What is the limiting size of the fish population?

(c) At what rates is the fish population changing at the end of
1 month and at the end of 10 months?

(d) After how many months is the population increasing most
rapidly?

111. Modeling Data The breaking strengths (in tons) of steel
cables of various diameters (in inches) are shown in the table.

(a) Use the regression capabilities of a graphing utility to fit
an exponential model to the data.

(b) Use a graphing utility to plot the data and graph the
model.

(c) Find the rates of growth of the model when and

112. Comparing Models The numbers (in thousands) of organ
transplants in the United States in the years 2001 through
2006 are shown in the table, with corresponding to
2001. (Source: Organ Procurement and Transplantation
Network)

(a) Use the regression capabilities of a graphing utility to find
the following models for the data.

(b) Use a graphing utility to plot the data and graph each of
the models. Which model do you think best fits the data?

(c) Interpret the slope of the linear model in the context of the
problem.

(d) Find the rate of change of each of the models for the year
2004. Which model is increasing at the greatest rate in
2004?

113. Conjecture

(a) Use a graphing utility to approximate the integrals of the
functions

and

on the interval 

(b) Use a graphing utility to graph the three functions.

(c) Use the results of parts (a) and (b) to make a conjecture
about the three functions. Could you make the conjecture
using only part (a)? Explain. Prove your conjecture
analytically.

114. Complete the table to demonstrate that can also be defined
as

In Exercises 115 and 116, find an exponential function that fits
the experimental data collected over time 

115.

116.

In Exercises 117–120, find the exact value of the expression.

117. 118.

119. 120.

True or False? In Exercises 121–126, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

121.

122. If then for any value of 

123. The functions and are inverse
functions of each other.

124. The exponential function is a solution of the 
differential equation 

125. The graphs of and meet at right angles.

126. If then the only zeros of are the zeros of 

127. (a) Show that 

(b) Are and the same function? Why
or why not?

(c) Find and 

128. Let for Show that has an

inverse function. Then find 

129. Show that solving the logistic differential equation

results in the logistic growth function in Example 7.

Hint:
1

y#5
4

" y$ !
4
5 &1

y
$

1
5
4

" y',+

y#0$ ! 1
dy
dt

!
8

25
y&5

4
" y',

f "1.

fa # 1.a > 0,f #x$ !
ax " 1
ax $ 1

g'#x$.f'#x$

g#x) ! x#xx$f #x$ ! #xx$x

#23$2 # 2#32$.

g.ff #x$ ! g#x$ex,

g#x$ ! e"xf #x$ ! ex

n ! 1, 2, 3,  .  .  . .dn y"dxn ! y,
y ! Cex

g#x$ ! ln#x " 2$f #x$ ! 2 $ ex

n.f #en$1$ " f #en$ ! 1f #x$ ! ln x,

e !
271,801
99,900

321"ln 291"ln 3

6ln 10"ln 651"ln 5

t.

lim
x→0$

#1 $ x$1"x.
e

(0, 4).

h#t$ ! 4e"0.653886tf #t$ ! 4&3
8'

2t"3

, g#t$ ! 4& 3*9
4 't

,

y4 ! axby3 ! abx

y2 ! a $ b ln xy1 ! ax $ b

x ! 1

y

d ! 1.5.
d ! 0.8

d
B

t

p#t$ !
10,000

1 $ 19e"t"5
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d 0.50 0.75 1.00 1.25 1.50 1.75

B 9.85 21.8 38.3 59.2 84.4 114.0

x 1 2 3 4 5 6

y 24.2 24.9 25.5 27.0 28.1 28.9

x 1 10"1 10"2 10"4 10"6

/1 1 x01/x

t 0 1 2 3 4

y 1200.00 720.00 432.00 259.20 155.52

t 0 1 2 3 4

y 600.00 630.00 661.50 694.58 729.30



130. Given the exponential function show that

(a)

(b)

131. (a) Determine given 

(b) Find the slope of the tangent line to the graph of 
at each of the following points.

(i)

(ii)

(iii)

(c) At what points on the graph of does the tangent
line not exist?

132. Consider the functions and 

(a) Given use a graphing utility to graph and in the
same viewing window. Identify the point(s) of intersection.

(b) Repeat part (a) using 

(c) Find all values of such that for all x.g#x$ , f #x$b

b ! 3.

gfb ! 2,

b > 1.g#x$ ! bx,f #x$ ! 1 $ x

yx ! xy

#4, 2$
#2, 4$
#c, c$

yx ! xy

yx ! xy.y'

f #2x$ ! ( f #x$)2.

f #u $ v$ ! f #u$ / f #v$.
f #x$ ! ax,
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Let

(a) Use a graphing utility to graph in the viewing window
What is the domain of 

(b) Use the zoom and trace features of a graphing utility to 
estimate

(c) Write a short paragraph explaining why the function is
continuous for all real numbers.

(d) Visually estimate the slope of at the point 

(e) Explain why the derivative of a function can be approximated
by the formula

for small values of Use this formula to approximate the
slope of at the point 

What do you think the slope of the graph of is at 

(f ) Find a formula for the derivative of and determine 
Write a short paragraph explaining how a graphing utility
might lead you to approximate the slope of a graph 
incorrectly.

(g) Use your formula for the derivative of to find the relative
extrema of Verify your answer using a graphing utility.

■ FOR FURTHER INFORMATION For more information on using
graphing utilities to estimate slope, see the article “Computer-Aided
Delusions” by Richard L. Hall in The College Mathematics Journal.
To view this article, go to the website www.matharticles.com.

f.
f

f'#0$.f

#0, 1$?f

f'#0$ - f #0 $ 1x$ " f #0 " 1x$
21x

!
f #1x$ " f #"1x$

21x

#0, 1$.f
1x.

f #x $ 1x$ " f #x " 1x$
21x

#0, 1$.f

f

lim
x→0

f #x$.

f ?"2 ≤ y ≤  2."3 ≤ x ≤  3,
f

f #x$ ! 3.x.x,
1,

x # 0
x ! 0.

Using Graphing Utilities to Estimate Slope

S E C T I O N  P R O J E C T

133. Which is greater

or

where

134. Show that if is positive, then

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

loge &1 $
1
x' >

1
1 $ x

.

x

n > 8?

#*n $ 1$*n#*n$*n$1

PUTNAM EXAM CHALLENGE
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5.6 Inverse Trigonometric Functions: Differentiation
■ Develop properties of the six inverse trigonometric functions.
■ Differentiate an inverse trigonometric function.
■ Review the basic differentiation rules for elementary functions.

Inverse Trigonometric Functions
This section begins with a rather surprising statement: None of the six basic
trigonometric functions has an inverse function. This statement is true because all six
trigonometric functions are periodic and therefore are not one-to-one. In this section
you will examine these six functions to see whether their domains can be redefined in
such a way that they will have inverse functions on the restricted domains.

In Example 4 of Section 5.3, you saw that the sine function is increasing (and
therefore is one-to-one) on the interval (see Figure 5.28). On this
interval you can define the inverse of the restricted sine function as

if and only if

where and 
Under suitable restrictions, each of the six trigonometric functions is one-to-one

and so has an inverse function, as shown in the following definition.

")"2 ( arcsin x ( )"2."1 ( x ( 1

sin y ! xy ! arcsin x

(")"2, )"2)

DEFINITIONS OF INVERSE TRIGONOMETRIC FUNCTIONS

y # 0"
)
2

( y (
)
2

,.x. , 1y !  arccsc x iff csc y ! x

y #
)
2

0 ( y ( ),.x. , 1y ! arcsec x iff sec y ! x

0 < y < )"% < x < %y ! arccot x iff cot y ! x

"
)
2

< y <
)
2

"% < x < %y ! arctan x iff tan y ! x

0 ( y ( )"1 ( x ( 1y ! arccos x iff cos y ! x

"
)
2

( y (
)
2

"1 ( x ( 1y ! arcsin x iff sin y ! x

RangeDomainFunction

NOTE The term is read as “the arcsine of ” or sometimes “the angle whose sine
is .” An alternative notation for the inverse sine function is ■“sin"1 x.”x

x“arcsin x”

E X P L O R A T I O N

The Inverse Secant Function In the definition above, the inverse secant
function is defined by restricting the domain of the secant function to the

intervals Most other texts and reference books agree with

this, but some disagree. What other domains might make sense? Explain your
reasoning graphically. Most calculators do not have a key for the inverse
secant function. How can you use a calculator to evaluate the inverse secant
function?

+0,
)
2'$ &)

2
, ),.

x

y

1

−1

−−π ππ
2

π
2

y x= sin
Domain:   [ /2,    /2]
Range: [ 1, 1]

−
−

π π

The sine function is one-to-one on

Figure 5.28
(")"2, )"2).

NOTE The term “iff” is used to 
represent the phrase “if and only if.”



The graphs of the six inverse trigonometric functions are shown in Figure 5.29.

EXAMPLE 1 Evaluating Inverse Trigonometric Functions

Evaluate each function.

a. b. arccos 0 c. d.

Solution

a. By definition, implies that In the interval
the correct value of is 

b. By definition, implies that In the interval you have

c. By definition, implies that In the interval
you have 

d. Using a calculator set in radian mode produces

■arcsin#0.3$ - 0.305.

arctan *3 !
)
3

y ! )"3.#")"2, )"2$,
tan y ! *3.y ! arctan *3

arccos 0 !
)
2

y ! )"2.
(0, )),cos y ! 0.y ! arccos 0

arcsin&"
1
2' ! "

)
6

")"6.y(")"2, )"2),
sin y ! "1

2.y ! arcsin#"1
2$

arcsin#0.3$arctan *3arcsin&"
1
2'
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x
−2 −1 1 2 

−

y = arcsin x

y

π
2

π
2

Domain:
Range: (")"2, )"2)

("1, 1)

x
−2 −1 1 2

y = arccos x

y

π

π

2

Domain:
Range : (0, ))

("1, 1)

x
−2 −1 1 2 

−

y = arctan x

y

π
2

π
2

Domain:
Range : #")"2, )"2$

#"%, %$

x
−1 1 2

−

y = arccsc x

y

π
2

π
2

Domain:
Range :
Figure 5.29

(")"2, 0$ $ #0, )"2)
#"%, "1) $ (1, %$

x
−2 −1 1 2 

y = arcsec x

y

π

π

2

Domain:
Range : (0, )"2$ $ #)"2, ))

#"%, "1) $ (1, %$

x
−2 −1 1 2 

y = arccot x

π 

y

π
2

Domain:
Range : #0, )$

#"%, %$

NOTE When evaluating inverse
trigonometric functions, remember that
they denote angles in radian measure.



Inverse functions have the properties

and

When applying these properties to inverse trigonometric functions, remember that the
trigonometric functions have inverse functions only in restricted domains. For values
outside these domains, these two properties do not hold. For example, is
equal to 0, not 

EXAMPLE 2 Solving an Equation

Original equation

Take tangent of each side.

Solve for ■

Some problems in calculus require that you evaluate expressions such as
as shown in Example 3.

EXAMPLE 3 Using Right Triangles

a. Given where find 

b. Given find 

Solution

a. Because you know that This relationship between and 
can be represented by a right triangle, as shown in Figure 5.30.

(This result is also valid for )

b. Use the right triangle shown in Figure 5.31.

■tan y ! tan+arcsec&*5
2 ', !

opp.
adj.

!
1
2

")"2 < y < 0.

cos y ! cos#arcsin x$ !
adj.
hyp.

! *1 " x2

yxsin y ! x.y ! arcsin x,

tan y.y ! arcsec#*5"2$,
cos y.0 < y < )"2,y ! arcsin x,

cos#arcsin x$,

x.x ! 2

tan#arctan x$ ! x 2x " 3 ! 1

 tan(arctan#2x " 3$) ! tan
)
4

 arctan#2x " 3$ !
)
4

).
arcsin#sin )$

x-

f"1# f #x$$ ! x.f # f"1#x$$ ! x
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PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS

If and then

and

If then

and

If and or then

and

Similar properties hold for the other inverse trigonometric functions.

arcsec#sec y$ ! y.sec#arcsec x$ ! x

)"2 < y ( ),0 ( y < )"2.x. , 1

arctan#tan y$ ! y.tan#arctan x$ ! x

")"2 < y < )"2,

arcsin#sin y$ ! y.sin#arcsin x$ ! x

")"2 ( y ( )"2,"1 ( x ( 1

E X P L O R A T I O N

Graph for
Why isn’t the

graph the same as the graph of
y ! x?

"4) ( x ( 4).
y ! arccos#cos x$

1 x

y

1 − x2

Figure 5.30
y ! arcsin x

1

y

2

5

Figure 5.31

y ! arcsec
*5

2



Derivatives of Inverse Trigonometric Functions
In Section 5.1 you saw that the derivative of the transcendental function
is the algebraic function You will now see that the derivatives of
the inverse trigonometric functions also are algebraic (even though the inverse
trigonometric functions are themselves transcendental).

The following theorem lists the derivatives of the six inverse trigonometric
functions. Proofs for arcsin and arcos are given in Appendix A, and the rest are left
as an exercise. (See Exercise 104.) Note that the derivatives of arccos arccot 
and arccsc are the negatives of the derivatives of arcsin arctan and arcsec 
respectively.

EXAMPLE 4 Differentiating Inverse Trigonometric Functions

a.

b.

c.

d.

The absolute value sign is not necessary because 

EXAMPLE 5 A Derivative That Can Be Simplified

■! 2*1 " x2! *1 " x2 $ *1 " x2

!
1

*1 " x2
"

x2

*1 " x2
$ *1 " x2

y' !
1

*1 " x2
$ x &1

2'#"2x$#1 " x2$"1"2 $ *1 " x2

y ! arcsin x $ x*1 " x2

e2x > 0.

d
dx

(arcsec e2x) !
2e2x

e2x*#e2x$2 " 1
!

2e2x

e2x*e4x " 1
!

2
*e4x " 1

d
dx

(arcsin *x) !
#1"2$ x"1"2

*1 " x
!

1
2*x*1 " x

!
1

2*x " x2

d
dx

(arctan#3x$) !
3

1 $ #3x$2 !
3

1 $ 9x2

d
dx

(arcsin#2x$) !
2

*1 " #2x$2
!

2
*1 " 4x2

u,u,u,u
u,u,

uu

f'#x$ ! 1"x.
f #x$ ! ln x
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THEOREM 5.16 DERIVATIVES OF INVERSE TRIGONOMETRIC FUNCTIONS

Let be a differentiable function of 

d
dx

(arccsc u) !
"u'

.u.*u2 " 1
d
dx

(arcsec u) !
u'

.u.*u2 " 1

d
dx

(arccot u) !
"u'

1 $ u2

d
dx

(arctan u) !
u'

1 $ u2

d
dx

(arccos u) !
"u'

*1 " u2

d
dx

(arcsin u) !
u'

*1 " u2

x.u

NOTE From Example 5, you can see one of the benefits of inverse trigonometric functions—
they can be used to integrate common algebraic functions. For instance, from the result shown
in the example, it follows that

■!
1
2

#arcsin x $ x*1 " x2$.%*1 " x2 dx

NOTE There is no common agreement
on the definition of (or )
for negative values of When we
defined the range of the arcsecant, we
chose to preserve the reciprocal identity

For example, to evaluate you
can write

One of the consequences of the definition
of the inverse secant function given in
this text is that its graph has a positive
slope at every value in its domain. 
(See Figure 5.29.) This accounts for the
absolute value sign in the formula for the
derivative of arcsec x.

x-

arcsec#"2$ ! arccos#"0.5$ - 2.09.

arcsec #"2$,

arcsec x ! arccos
1
x
.

x.
arccsc xarcsec x

If your graphing
utility does not have the arcsecant
function, you can obtain its graph
using

f #x$ ! arcsec x ! arccos
1
x
.

TECHNOLOGY



EXAMPLE 6 Analyzing an Inverse Trigonometric Graph

Analyze the graph of 

Solution From the derivative

you can see that the only critical number is By the First Derivative Test, this
value corresponds to a relative minimum. From the second derivative

it follows that points of inflection occur when Using Newton’s
Method, these points occur when Finally, because

it follows that the graph has a horizontal asymptote at The graph is shown
in Figure 5.32.

EXAMPLE 7 Maximizing an Angle

A photographer is taking a picture of a painting hung in an art gallery. The height of
the painting is 4 feet. The camera lens is 1 foot below the lower edge of the painting,
as shown in Figure 5.33. How far should the camera be from the painting to maximize
the angle subtended by the camera lens?

Solution In Figure 5.33, let be the angle to be maximized.

Differentiating produces

Because when you can conclude from the First Derivative Test
that this distance yields a maximum value of So, the distance is feet and
the angle is radian ■-  41.81*.+ - 0.7297

x - 2.236+.
x ! *5,d+"dx ! 0

!
4#5 " x2$

#25 $ x2$#1 $ x2$.

!
"5

25 $ x2 $
1

1 $ x2

d+
dx

!
"1"5

1 $ #x2"25$ "
"1

1 $ x2

! arccot
x
5

" arccot x

+ ! - " 0

+

y ! )2"4.

lim
x→±%

#arctan x$2 !
)2

4

x - ±0.765.
2x arctan x ! 1.

!
2 #1 " 2x arctan x$

#1 $ x2$2

y& !
#1 $ x2$& 2

1 $ x2' " #2 arctan x$#2x$

#1 $ x2$2

x ! 0.

!
2 arctan x

1 $ x2

y' ! 2 #arctan x$& 1
1 $ x2'

y ! #arctan x$2.
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x
−2

1

1

−1

−1

2

3

2

y = (arctan x)2

y = π
4

2

Points of
inflection

y

The graph of has a 
horizontal asymptote at 
Figure 5.32

y ! ) 2"4.
y ! #arctan x$2

α
β θ

1 ft

4 ft

x

Not drawn to scale

The camera should be 2.236 feet from the
painting to maximize the angle 
Figure 5.33

+.



Review of Basic Differentiation Rules
In the 1600s, Europe was ushered into the scientific age by such great thinkers as
Descartes, Galileo, Huygens, Newton, and Kepler. These men believed that nature is
governed by basic laws—laws that can, for the most part, be written in terms of
mathematical equations. One of the most influential publications of this period—
Dialogue on the Great World Systems, by Galileo Galilei—has become a classic
description of modern scientific thought.

As mathematics has developed during the past few hundred years, a small num-
ber of elementary functions have proven sufficient for modeling most* phenomena in
physics, chemistry, biology, engineering, economics, and a variety of other fields. An
elementary function is a function from the following list or one that can be formed
as the sum, product, quotient, or composition of functions in the list.

Polynomial functions Logarithmic functions

Rational functions Exponential functions

Functions involving radicals Trigonometric functions

Inverse trigonometric functions

With the differentiation rules introduced so far in the text, you can differentiate any
elementary function. For convenience, these differentiation rules are summarized
below.

Transcendental FunctionsAlgebraic Functions
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BASIC DIFFERENTIATION RULES FOR ELEMENTARY FUNCTIONS

1. 2. 3.

4. 5. 6.

7. 8. 9.

10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20. 21.

22. 23. 24.
d
dx

(arccsc u) !
"u'

.u.*u2 " 1
d
dx

(arcsec u) !
u'

.u.*u2 " 1
d
dx

(arccot u) !
"u'

1 $ u2

d
dx

(arctan u) !
u'

1 $ u2

d
dx

(arccos u) !
"u'

*1 " u2

d
dx

(arcsin u) !
u'

*1 " u2

d
dx

(csc u) ! "#csc u cot u$u'
d
dx

(sec u) ! #sec u tan u$u'
d
dx

(cot u) ! "#csc2 u$u'

d
dx

(tan u) ! #sec2 u$u'
d
dx

(cos u) ! "#sin u$u'
d
dx

(sin u) ! #cos u$u'

d
dx

(au) ! #ln a$auu'
d
dx

(loga u) !
u'

#ln a$u
d
dx

(eu) ! eu u'

d
dx

(ln u) !
u'
u

d
dx

(.u.) !
u

.u. #u'$,  u # 0
d
dx

(x) ! 1

d
dx

(un) ! nun"1u'
d
dx

(c) ! 0
d
dx +

u
v, !

vu' " uv'
v2

d
dx

(uv) ! uv' $ vu'
d
dx

(u ± v) ! u' ± v'
d
dx

(cu) ! cu'

GALILEO GALILEI (1564–1642)

Galileo’s approach to science departed from
the accepted Aristotelian view that nature
had describable qualities, such as “fluidity”
and “potentiality.” He chose to describe the
physical world in terms of measurable 
quantities, such as time, distance, force, 
and mass.

* Some important functions used in engineering and science (such as Bessel functions and
gamma functions) are not elementary functions.



Numerical and Graphical Analysis In Exercises 1 and 2,
(a) use a graphing utility to complete the table, (b) plot the
points in the table and graph the function by hand, (c) use a
graphing utility to graph the function and compare the result
with your hand-drawn graph in part (b), and (d) determine any
intercepts and symmetry of the graph.

1. 2.

In Exercises 3 and 4, determine the missing coordinates of the
points on the graph of the function.

3. 4.

In Exercises 5–12, evaluate the expression without using a
calculator.

5. 6.

7. 8.

9. 10.

11. 12.

In Exercises 13–16, use a calculator to approximate the value.
Round your answer to two decimal places.

13. 14.

15. 16.

In Exercises 17–20, evaluate each expression without using a
calculator. (Hint: See Example 3.)

17. (a) 18. (a)

(b) (b)

19. (a) 20. (a)

(b) (b)

In Exercises 21– 26, use the figure to write the expression in
algebraic form given where 

21.

22.

23.

24.

25.

26.

In Exercises 27–34, write the expression in algebraic form.
[Hint: Sketch a right triangle, as demonstrated in Example 3.]

27. 28.

29. 30.

31. 32.

33. 34.

In Exercises 35 and 36, (a) use a graphing utility to graph and
in the same viewing window to verify that they are equal,

(b) use algebra to verify that and are equal, and (c) identify
any horizontal asymptotes of the graphs.

35.

36.

In Exercises 37– 40, solve the equation for 

37. 38.

39. 40.

In Exercises 41 and 42, verify each identity.

41. (a)

(b)

42. (a)

(b)

In Exercises 43–62, find the derivative of the function.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52. f #x$ ! arcsin x $ arccos xh #t$ ! sin #arccos t$

h #x$ ! x2 arctan 5xg #x$ !
arcsin 3x

x

f #x$ ! arctan*xf #x$ ! arctan ex

f #x$ ! arcsec 2xg#x$ ! 3 arccos 
x
2

f #t$ ! arcsin t2f #x$ ! 2 arcsin #x " 1$

arccos#"x$ ! ) " arccos x,  .x. ( 1

arcsin#"x$ ! "arcsin x,  .x. ( 1

arctan x $ arctan
1
x

!
)
2

,  x > 0

arccsc x ! arcsin
1
x
,  x , 1

arccos x ! arcsec xarcsin*2x ! arccos*x

arctan#2x " 5$ ! "1arcsin #3x " )) ! 1
2

x.

f #x$ ! tan&arccos
x
2',    g #x$ !

*4 " x2

x

f #x$ ! sin #arctan 2x$,    g #x$ !
2x

*1 $ 4x2

gf
g

f

cos&arcsin
x " h

r 'csc&arctan
x
*2'

sec(arcsin#x " 1$)tan&arcsec
x
3'

cos#arccot x$sin#arcsec x$
sec#arctan 4x$cos#arcsin 2x$

csc y

sec y

cot y

tan y

sin y

x

1

y

cos y

0 < y < #/2.y ! arccos x,

tan+arcsin&"
5
6',csc+arctan&"

5
12',

sec+arctan&"
3
5',cot+arcsin&"

1
2',

cos&arcsin
5
13'sec&arcsin

4
5'

tan&arccos
*2
2 'sin&arctan

3
4'

arctan#"5$arcsec 1.269

arcsin#"0.39$arccos#"0.8$

arcsec#"*2$arccsc#"*2$
arccot#"*3 $arctan

*3
3

arccos 1arccos 1
2

arcsin 0arcsin 1
2

       , 

y

x

π
4

3− ,

))       , − π
6 ))

) )

π
2

π
2

−

−3 −2 1 2 3

y = arctan x

       ,        ,

y

x

π

π3

1
2

4

y = arccos x

−1 − 11
2

1
2

3
2

       ,

) )))
) )

y ! arccos xy ! arcsin x
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5.6 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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53.

54.

55.

56.

57.

58.

59.

60.

61. 62.

In Exercises 63–68, find an equation of the tangent line to the
graph of the function at the given point.

63.

64.

65. 66.

67.

68.

Linear and Quadratic Approximations In Exercises 69–72, use
a computer algebra system to find the linear approximation

and the quadratic approximation
of the function 

at Sketch the graph of the function and its linear and
quadratic approximations.

69. 70.

71. 72.

In Exercises 73–76, find any relative extrema of the function.

73. 74.

75.

76.

In Exercises 77– 80, analyze and sketch a graph of the function.
Identify any relative extrema, points of inflection, and 
asymptotes. Use a graphing utility to verify your results.

77. 78.

79. 80.

Implicit Differentiation In Exercises 81– 84, find an equation of
the tangent line to the graph of the equation at the given point.

81.

82.

83.

84.

89. (a) Use a graphing utility to evaluate arcsin and 
arcsin

(b) Let Find the values of in the 
interval such that is a real number.

True or False? In Exercises 91–96, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

91. Because it follows that 

92.

93. The slope of the graph of the inverse tangent function is
positive for all 

94. The range of is 

95. for all in the domain.

96.

97. Angular Rate of Change An airplane flies at an altitude of 
5 miles toward a point directly over an observer. Consider and

as shown in the figure on the next page.x
-

arcsin2 x $ arccos2 x ! 1

x
d
dx

(arctan#tan x$) ! 1

(0, )).y ! arcsin x

x.

arcsin
)
4

!
*2
2

arccos
1
2

! "
)
3

.cos&"
)
3' !

1
2

,

f (x)"1 ( x ( 1
xf #x$ ! arcsin#arcsin x$.

#arcsin 1$.
#arcsin 0.5$

#1, 0$arctan#x $ y$ ! y2 $
)
4

,

&*2
2

,
*2
2 'arcsin x $ arcsin y !

)
2

,

#0, 0$arctan#xy$ ! arcsin#x $ y$,

&"
)
4

, 1'x2 $ x arctan y ! y " 1,

f #x$ ! arccos
x
4

f #x$ ! arcsec 2x

f #x$ ! arctan x $
)
2

f #x) ! arcsin#x " 1$

h#x$ ! arcsin x " 2 arctan x

f #x$ ! arctan x " arctan#x " 4$
f #x$ ! arcsin x " 2xf #x$ ! arcsec x " x

a ! 1f #x$ ! arctan x,a ! 1
2f #x$ ! arcsin x,

a ! 0f #x$ ! arccos x,a ! 0f #x$ ! arctan x,

x ! a.
fP2 /x0 ! f /a0 1 f'/a0/x " a0 1 1

2 f& /a0/x " a02
P1/x0 ! f /a0 1 f'/a0/x " a0

&1
2

,
)
4'y ! 3x arcsin x,

#1, 2))y ! 4x arccos#x " 1$,

&*2
4

,
)
4'y ! arcsec 4x,&2,

)
4'y ! arctan

x
2

,

&"
*2
2

,
3)
8 'y !

1
2

 arccos x,

&1
2

,
)
3'y ! 2 arcsin x,

y ! arctan
x
2

"
1

2#x2 $ 4$y ! arctan x $
x

1 $ x2

y ! 25 arcsin 
x
5

" x*25 " x2

y ! 8 arcsin 
x
4

"
x*16 " x2

2

y ! x arctan 2x "
1
4

 ln#1 $ 4x2$

y ! x arcsin x $ *1 " x2

y !
1
2+x*4 " x2 $ 4 arcsin&x

2',
y !

1
2 &1

2
 ln 

x $ 1
x " 1

$ arctan x'
y ! ln#t 2 $ 4$ "

1
2

 arctan 
t
2

y ! 2x arccos x " 2*1 " x2
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85. Explain why the domains of the trigonometric functions are
restricted when finding the inverse trigonometric functions.

86. Explain why does not imply that 

87. Explain how to graph on a graphing utility that
does not have the arccotangent function.

88. Are the derivatives of the inverse trigonometric functions
algebraic or transcendental functions? List the derivatives
of the inverse trigonometric functions.

y ! arccot x

arctan 0 ! ).tan ) ! 0

WRITING ABOUT CONCEPTS

90. The point is on the graph of Does

lie on the graph of If not, does this

contradict the definition of inverse function?

y ! arccos x?&0,
3)
2 '

y ! cos x.&3)
2

, 0'
CAPSTONE

CAS



Figure for 97

(a) Write as a function of 

(b) The speed of the plane is 400 miles per hour. Find 
when miles and miles.

98. Writing Repeat Exercise 97 for an altitude of 3 miles and
describe how the altitude affects the rate of change of 

99. Angular Rate of Change In a free-fall experiment, an object
is dropped from a height of 256 feet. A camera on the ground
500 feet from the point of impact records the fall of the object
(see figure).

(a) Find the position function that yields the height of the
object at time assuming the object is released at time

At what time will the object reach ground level?

(b) Find the rates of change of the angle of elevation of the
camera when and 

Figure for 99 Figure for 100

100. Angular Rate of Change A television camera at ground 
level is filming the lift-off of a space shuttle at a point 
800 meters from the launch pad. Let be the angle of 
elevation of the shuttle and let be the distance between the
camera and the shuttle (see figure). Write as a function of 
for the period of time when the shuttle is moving vertically.
Differentiate the result to find in terms of and 

101. Maximizing an Angle A billboard 85 feet wide is perpendi-
cular to a straight road and is 40 feet from the road (see figure).
Find the point on the road at which the angle subtended by
the billboard is a maximum.

Figure for 101 Figure for 102

102. Angular Speed A patrol car is parked 50 feet from a long
warehouse (see figure). The revolving light on top of the car
turns at a rate of 30 revolutions per minute. Write as a 
function of How fast is the light beam moving along the
wall when the beam makes an angle of with the line
perpendicular from the light to the wall?

103. (a) Prove that 

(b) Use the formula in part (a) to show that

104. Verify each differentiation formula.

(a)

(b)

(c)

(d)

105. Existence of an Inverse Determine the values of such that
the function has an inverse function.

106. Think About It Use a graphing utility to graph 
and

(a) Why isn’t the graph of the line 

(b) Determine the extrema of 

107. (a) Graph the function on the
interval 

(b) Describe the graph of 

(c) Verify the result of part (b) analytically.

108. Prove that 

109. In the figure find the value of in the interval on the -
axis thatmaximizes angle 

Figure for 109 Figure for 110

110. In the figure find such that and is a
maximum.

111. Some calculus textbooks define the inverse secant function
using the range 

(a) Sketch the graph using this range.

(b) Show that y' !
1

x*x2 " 1
.

y ! arcsec x

(0, )"2$ $ (), 3)"2$.

m ! -0 ( PR ( 3PR

R

Q

P

3

2

5

θ

y

x
c

(0, 2) (4, 2)

θ

-.
x(0, 4)c

.x. < 1.arcsin x ! arctan& x
*1 " x2',

f.

("1, 1).
f #x$ ! arccos x $ arcsin x

g.

y ! x?g

g #x$ ! arcsin #sin x$.
f #x$ ! sin x

f #x$ ! kx $ sin x
k

d
dx

(arccsc u) !
"u'

.u.*u2 " 1

d
dx

(arcsec u) !
u'

.u.*u2 " 1

d
dx

(arccot u) !
"u'

1 $ u2

d
dx

(arctan u) !
u'

1 $ u2

arctan
1
2

$ arctan
1
3

!
)
4

.

xy # 1.arctan x $ arctan y ! arctan
x $ y
1 " xy

,

- ! 45*
x.

-

θ

x

50 ftθ

40 ft

x

85 ft

Not drawn to scale

-

ds"dt.sd-"dt

s-
s

-

h
s

θ
800 m

Not drawn to scale

256 ft

θ
500 ft

Not drawn to scale

t ! 2.t ! 1

t ! 0.
t

-.

x ! 3x ! 10
d-"dt

x.-

x

5 mi

θ

Not drawn to scale
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■ Integrate functions whose antiderivatives involve inverse trigonometric functions.
■ Use the method of completing the square to integrate a function.
■ Review the basic integration rules involving elementary functions.

Integrals Involving Inverse Trigonometric Functions
The derivatives of the six inverse trigonometric functions fall into three pairs. In each
pair, the derivative of one function is the negative of the other. For example,

and

When listing the antiderivative that corresponds to each of the inverse trigonometric
functions, you need to use only one member from each pair. It is conventional to use

as the antiderivative of rather than The next theorem
gives one antiderivative formula for each of the three pairs. The proofs of these
integration rules are left to you (see Exercises 87–89).

EXAMPLE 1 Integration with Inverse Trigonometric Functions

a.

b.

c.

■

The integrals in Example 1 are fairly straightforward applications of integration
formulas. Unfortunately, this is not typical. The integration formulas for inverse
trigonometric functions can be disguised in many ways.

!
1
3

 arcsec .2x.
3

$ C

a ! 3u ! 2x,% dx
x*4x2 " 9

! % 2 dx
2x*#2x$2 " 32

!
1

3*2
 arctan 

3x
*2

$ C

a ! *2u ! 3x,% dx
2 $ 9x2 !

1
3 % 3 dx

#*2 $2 $ #3x$2

% dx
*4 " x2

! arcsin
x
2

$ C

"arccos x.1"*1 " x2,arcsin x

d
dx

(arccos x) ! "
1

*1 " x2
.

d
dx

(arcsin x) !
1

*1 " x2
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THEOREM 5.17 INTEGRALS INVOLVING INVERSE TRIGONOMETRIC 
FUNCTIONS

Let be a differentiable function of and let 

1. 2.

3. % du
u*u2 " a2

!
1
a

 arcsec .u.
a

$ C

% du
a2 $ u2 !

1
a

 arctan 
u
a

$ C% du
*a2 " u2

! arcsin
u
a

$ C

a > 0.x,u

■ FOR FURTHER INFORMATION For a
detailed proof of rule 2 of Theorem 5.17,
see the article “A Direct Proof of the
Integral Formula for Arctangent” by
Arnold J. Insel in The College
Mathematics Journal. To view this article,
go to the website www.matharticles.com.



EXAMPLE 2 Integration by Substitution

Find

Solution As it stands, this integral doesn’t fit any of the three inverse trigonometric
formulas. Using the substitution however, produces

With this substitution, you can integrate as follows.

Write as 

Substitute.

Rewrite to fit Arcsecant Rule.

Apply Arcsecant Rule.

Back-substitute.

EXAMPLE 3 Rewriting as the Sum of Two Quotients

Find

Solution This integral does not appear to fit any of the basic integration formulas.
By splitting the integrand into two parts, however, you can see that the first part can
be found with the Power Rule and the second part yields an inverse sine function.

■

Completing the Square
Completing the square helps when quadratic functions are involved in the integrand.
For example, the quadratic can be written as the difference of two
squares by adding and subtracting 

! &x $
b
2'

2

" &b
2'

2

$ c

x2 $ bx $ c ! x2 $ bx $ &b
2'

2
" &b

2'
2

$ c

#b"2$2.
x2 $ bx $ c

! "*4 " x2 $ 2 arcsin 
x
2

$ C

! "
1
2 +#4 " x2$1"2

1"2 , $ 2 arcsin 
x
2

$ C

! "
1
2 %#4 " x2$"1"2#"2x$ dx $ 2 % 1

*4 " x2
dx

% x $ 2
*4 " x2

dx ! % x
*4 " x2

dx $ % 2
*4 " x2

dx

% x $ 2
*4 " x2

dx.

! arcsec ex $ C

! arcsec .u.
1

$ C

! % du
u*u2 " 1

! % du"u
*u2 " 1

#e x$2.e2x% dx
*e2x " 1

! % dx
*#ex$2 " 1

dx !
du
ex !

du
u

.du ! ex dxu ! ex

u ! ex,

% dx
*e2x " 1

.
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Computer software that can perform
symbolic integration is useful for
integrating functions such as the 
one in Example 2. When using 
such software, however, you must
remember that it can fail to find an
antiderivative for two reasons. First,
some elementary functions simply 
do not have antiderivatives that are
elementary functions. Second, every
symbolic integration utility has 
limitations—you might have entered 
a function that the software was not
programmed to handle. You should
also remember that antiderivatives
involving trigonometric functions or
logarithmic functions can be written 
in many different forms. For instance,
one symbolic integration utility found
the integral in Example 2 to be

Try showing that this antiderivative 
is equivalent to that obtained in
Example 2.

% dx
*e2x " 1

! arctan *e2x " 1 $ C.
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EXAMPLE 4 Completing the Square

Find

Solution You can write the denominator as the sum of two squares, as follows.

Now, in this completed square form, let and 

■

If the leading coefficient is not 1, it helps to factor before completing the square.
For instance, you can complete the square of by factoring first.

To complete the square when the coefficient of is negative, use the same factoring
process shown above. For instance, you can complete the square for as
shown.

EXAMPLE 5 Completing the Square (Negative Leading Coefficient)

Find the area of the region bounded by the graph of 

the axis, and the lines and 

Solution In Figure 5.34, you can see that the area is given by

Using the completed square form derived above, you can integrate as shown.

■- 0.524

!
)
6

! arcsin
1
2

"arcsin 0

! arcsin
x " #3"2$

3"2 ,
9"4

3"2

%9"4

3"2

dx
*3x " x2

! %9"4

3"2

dx
*#3"2$2 " (x " #3"2$)2

Area ! %9"4

3"2

1
*3x " x2

dx.

x ! 9
4.x ! 3

2x-

f#x$ !
1

*3x " x2

! #3
2$2

" #x " 3
2$2

! "(x2 " 3x $ #3
2$2

" #3
2$2)

 3x " x2 ! "#x2 " 3x$

3x " x2
x2

! 2(#x " 2$2 $ 1)
! 2#x2 " 4x $ 4 " 4 $ 5$

 2x2 " 8x $ 10 ! 2#x2 " 4x $ 5$

2x2 " 8x $ 10

% dx
x2 " 4x $ 7

! % dx
#x " 2$2 $ 3

!
1
*3

 arctan 
x " 2
*3

$ C

a ! *3.u ! x " 2

! #x " 2$2 $ 3 ! u2 $ a2

x2 " 4x $ 7 ! #x2 " 4x $ 4$ " 4 $ 7

% dx
x2 " 4x $ 7

.
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x
1

1

2 3

2

3

x = 3
2

x = 9
4

f(x) = 1
3x − x2

y

The area of the region bounded by the graph
of the -axis, and is 
Figure 5.34

)"6.x ! 9
4x ! 3

2,xf,

With definite
integrals such as the one given in
Example 5, remember that you can
resort to a numerical solution. For
instance, applying Simpson’s Rule
(with ) to the integral in the
example, you obtain

This differs from the exact value of
the integral by
less than one millionth.

#)"6 - 0.5235988$

%9"4

3"2

1
*3x " x2

dx - 0.523599.

n ! 12

TECHNOLOGY



Review of Basic Integration Rules
You have now completed the introduction of the basic integration rules. To be
efficient at applying these rules, you should have practiced enough so that each rule is
committed to memory.

You can learn a lot about the nature of integration by comparing this list with the
summary of differentiation rules given in the preceding section. For differentiation,
you now have rules that allow you to differentiate any elementary function. For
integration, this is far from true.

The integration rules listed above are primarily those that were happened on 
during the development of differentiation rules. So far, you have not learned any rules
or techniques for finding the antiderivative of a general product or quotient, the 
natural logarithmic function, or the inverse trigonometric functions. More importantly,
you cannot apply any of the rules in this list unless you can create the proper 
corresponding to the in the formula. The point is that you need to work more on 
integration techniques, which you will do in Chapter 8. The next two examples should
give you a better feeling for the integration problems that you can and cannot do with
the techniques and rules you now know.

u
du
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BASIC INTEGRATION RULES 

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. % du
u*u2 " a2

!
1
a

 arcsec .u.
a

$ C% du
a2 $ u2 !

1
a

 arctan 
u
a

$ C

% du
*a2 " u2

! arcsin
u
a

$ C%csc u cot u du ! "csc u $ C

%sec u tan u du ! sec u $ C%csc2 u du ! "cot u $ C

%sec2 u du ! tan u $ C%csc u du ! "ln.csc u $ cot u. $ C

%sec u du ! ln.sec u $ tan u. $ C%cot u du ! ln.sin u. $ C

%tan u du ! "ln.cos u. $ C%cos u du ! sin u $ C

%sin u du ! "cos u $ C%au du ! & 1
ln a'au $ C

%eu du ! eu $ C%du
u

! ln.u. $ C

n # "1%un du !
un$1

n $ 1
$ C,%du ! u $ C

%( f#u$ ± g#u$) du ! %f #u$ du ± %g#u$ du%k f#u$ du ! k%f#u$ du

/a > 00



EXAMPLE 6 Comparing Integration Problems

Find as many of the following integrals as you can using the formulas and techniques
you have studied so far in the text.

a. b. c.

Solution
a. You can find this integral (it fits the Arcsecant Rule).

b. You can find this integral (it fits the Power Rule).

c. You cannot find this integral using the techniques you have studied so far. (You
should scan the list of basic integration rules to verify this conclusion.)

EXAMPLE 7 Comparing Integration Problems

Find as many of the following integrals as you can using the formulas and techniques
you have studied so far in the text.

a. b. c.

Solution
a. You can find this integral (it fits the Log Rule).

b. You can find this integral (it fits the Power Rule).

c. You cannot find this integral using the techniques you have studied so far. ■

!
#ln x$2

2
$ C

%ln x dx
x

! %&1
x'#ln x$1 dx

! ln.ln x. $ C

% dx
x ln x

! %1"x
ln x

dx

%ln x dx%ln x dx
x% dx

x ln x

! *x2 " 1 $ C

!
1
2 +#x2 " 1$1"2

1"2 , $ C

% x dx
*x2 " 1

!
1
2%#x2 " 1$"1"2#2x$ dx

% dx
x*x2 " 1

! arcsec.x. $ C

% dx
*x2 " 1% x dx

*x2 " 1% dx
x*x2 " 1
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NOTE Note in Examples 6 and 7 that the simplest functions are the ones that you cannot
yet integrate. ■



In Exercises 1–24, find the integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–38, evaluate the integral.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39– 50, find or evaluate the integral. (Complete the
square, if necessary.)

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

In Exercises 51– 54, use the specified substitution to find or
evaluate the integral.

51. 52.

53. 54.

u ! *x $ 1u ! *x

%1

0

dx
2*3 " x*x $ 1%3

1

dx
*x#1 $ x$

u ! *x " 2u ! *et " 3

% *x " 2
x $ 1

dx%*et " 3 dt

% x
*9 $ 8x2 " x 4

dx% x
x 4 $ 2x2 $ 2

dx

% 1
#x " 1$*x2 " 2x

dx%3

2

2x " 3
*4x " x2

dx

% x " 1
*x2 " 2x

dx% x $ 2
*"x2 " 4x

dx

% 2
*"x2 $ 4x

dx% 1
*"x2 " 4x

dx

% 2x " 5
x2 $ 2x $ 2

dx% 2x
x2 $ 6x $ 13

dx

%2

"2

dx
x2 $ 4x $ 13%2

0

dx
x2 " 2x $ 2

%1"*2

0

arccos x
*1 " x2

dx%1"*2

0

arcsin x
*1 " x2

dx

%)"2

0

cos x
1 $ sin2 x

dx%)

)"2
 

sin x
1 $ cos2 x

 dx

%ln 4

ln 2

e"x

*1 " e"2x dx%ln 5

0

ex

1 $ e2x dx

%4

1

1
x*16x2 " 5

dx%6

3

1
25 $ #x " 3$2 dx

%0

"*3

x
1 $ x2 dx%0

"1"2

x
*1 " x2

dx

%3

*3

6
9 $ x2 dx%*3"2

0

1
1 $ 4x2 dx

%1

0

dx
*4 " x2%1"6

0

3
*1 " 9x2

dx

% x " 2
#x $ 1$2 $ 4

dx% x $ 5
*9 " #x " 3$2

dx

% 4x $ 3
*1 " x2

dx% x " 3
x2 $ 1

dx

% 3
2*x#1 $ x$

dx% 1
*x*1 " x

dx

%x 4 " 1
x2 $ 1

dx% x3

x2 $ 1
dx

% sin x
7 $ cos2 x

dx% sec2 x
*25 " tan2 x

dx

% 1
3 $ #x " 2$2 dx% e2x

4 $ e4x dx

% 1
x*1 " #ln x$2

dx% t
t4 $ 25

dt

% 1
x*x 4 " 4

dx% t
*1 " t4

dt

% t
t4 $ 16

dt% 1
*1 " #x $ 1$2

dx

% 1
4 $ #x " 3$2 dx% 1

x*4x2 " 1
dx

% 12
1 $ 9x2 dx% 7

16 $ x2 dx

% dx
*1 " 4x2% dx

*9 " x2
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5.7 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

In Exercises 55–57, determine which of the integrals can be
found using the basic integration formulas you have studied
so far in the text.

55. (a) (b) (c)

56. (a) (b) (c)

57. (a) (b) (c)

58. Determine which value best approximates the area of the
region between the axis and the function

over the interval (Make your selection on the
basis of a sketch of the region and not by performing any
calculations.)

(a) 4 (b) (c) 1 (d) 2 (e) 3

59. Decide whether you can find the integral 

using the formulas and techniques you have studied so far.
Explain your reasoning.

% 2 dx
*x2 $ 4

"3

("0.5, 0.5).

f #x$ !
1

*1 " x2

x-

% x
*x " 1

dx%x*x " 1 dx%*x " 1 dx

% 1
x2 e1"x dx%xex2 dx%ex2 dx

% 1
x*1 " x2

dx% x
*1 " x2

dx% 1
*1 " x2

dx

WRITING ABOUT CONCEPTS



Differential Equations In Exercises 61 and 62, use the
differential equation and the specified initial condition to find 

61. 62.

Slope Fields In Exercises 63–66, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketches in part (a). To print an enlarged copy of the graph,
go to the website www.mathgraphs.com.

63. 64.

65. 66.

Slope Fields In Exercises 67–70, use a computer algebra
system to graph the slope field for the differential equation and
graph the solution satisfying the specified initial condition.

67. 68.

69. 70.

Area In Exercises 71–76, find the area of the region.

71. 72.

73. 74.

75. 76.

In Exercises 77 and 78, (a) verify the integration formula, then
(b) use it to find the area of the region.

77.

Figure for 77 Figure for 78

78.

! x#arcsin x$2 " 2x $ 2*1 " x2 arcsin x $ C

% #arcsin x$2 dx

y

x

1

2

1−1 −

1
2

1
2

1
2

3
2

y = (arcsin x)2y

x

2

1

−1
1 2

x =    3

y = arctan x
x2

% arctan x
x2 dx ! ln x "

1
2

 ln#1 $ x2$ "
arctan x

x
$ C

y

x

x = ln    3

−1−2 1 2
−1

1

3

y

x
π
2

π
4

π
4

−

−2

−3

1

3

y !
4ex

1 $ e2xy !
3 cos x

1 $ sin2 x

y

x
−1−2−3−4−5 1

0.1

0.2

0.5

y

x
−1−2 1 2 3 4

−0.2

0.2

0.3

0.4

y !
2

x2 $ 4x $ 8
y !

1
x2 " 2x $ 5

y

x
1 2

1

2

2
2

x =

y

x

2

3

−1
−1−2 1 2

y !
1

x*x2 " 1
y !

2
*4 " x2

y#0$ ! 4
dy
dx

!
*y

1 $ x2,y#0$ ! 2
dy
dx

!
2y

*16 " x2
,

y#4$ ! 2
dy
dx

!
1

12 $ x2,y#3$ ! 0
dy
dx

!
10

x*x2 " 1
,

x

y

5

−5

−5 5
x

y

41−4 −1

4

3

2

1

−4

−3

−2

#5, )$dy
dx

!
2

*25 " x2
,#2, 1$dy

dx
!

1
x*x2 " 4

,

x

y

4−4

5

−3

x

y

5

5

−5

−5

#0, 2$dy
dx

!
2

9 $ x2,#0, 0$dy
dx

!
3

1 $ x2,

y#2$ ! )y#0$ ! )

dy
dx

!
1

4 $ x2

dy
dx

!
1

*4 " x2

y.
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60. Determine which of the integrals can be found using the
basic integration formulas you have studied so far in the
text.

(a) (b) (c) % x3

1 $ x 4 dx% x
1 $ x 4 dx% 1

1 $ x 4 dx

CAPSTONE

CAS



79. (a) Sketch the region whose area is represented by

(b) Use the integration capabilities of a graphing utility to
approximate the area.

(c) Find the exact area analytically.

80. (a) Show that 

(b) Approximate the number using Simpson’s Rule (with
) and the integral in part (a).

(c) Approximate the number by using the integration 
capabilities of a graphing utility.

81. Investigation Consider the function 

(a) Write a short paragraph giving a geometric interpretation of

the function relative to the function 

Use what you have written to guess the value of that will
make maximum.

(b) Perform the specified integration to find an alternative form
of Use calculus to locate the value of that will make

maximum and compare the result with your guess in
part (a).

82. Consider the integral 

(a) Find the integral by completing the square of the radicand.

(b) Find the integral by making the substitution 

(c) The antiderivatives in parts (a) and (b) appear to be
significantly different. Use a graphing utility to graph each
antiderivative in the same viewing window and determine
the relationship between them. Find the domain of each.

True or False? In Exercises 83–86, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

83.

84.

85.

86. One way to find is to use the Arcsine Rule.

Verifying Integration Rules In Exercises 87– 89, verify each
rule by differentiating. Let 

87.

88.

89.

90. Numerical Integration (a) Write an integral that represents
the area of the region in the figure. (b) Then use the Trapezoidal
Rule with to estimate the area of the region. (c) Explain
how you can use the results of parts (a) and (b) to estimate 

91. Vertical Motion An object is projected upward from ground
level with an initial velocity of 500 feet per second. In this
exercise, the goal is to analyze the motion of the object during
its upward flight.

(a) If air resistance is neglected, find the velocity of the object
as a function of time. Use a graphing utility to graph this
function.

(b) Use the result of part (a) to find the position function and
determine the maximum height attained by the object.

(c) If the air resistance is proportional to the square of the
velocity, you obtain the equation

where feet per second per second is the acceleration
due to gravity and is a constant. Find the velocity as a
function of time by solving the equation

(d) Use a graphing utility to graph the velocity function in
part (c) for Use the graph to approximate the
time at which the object reaches its maximum height.

(e) Use the integration capabilities of a graphing utility to
approximate the integral

where and are those found in part (d). This is the
approximation of the maximum height of the object.

(f ) Explain the difference between the results in parts (b) and (e).

92. Graph and on 

Prove that for x > 0.
x

1 $ x2 < arctan x < x

(0, 10).y3 ! xy2 ! arctan x,y1 !
x

1 $ x2,

t0v#t$

%t0

0
v#t$ dt

t0

k ! 0.001.
v#t$

% dv
32 $ kv2 ! "%dt.

k
"32

dv
dt

! "#32 $ kv2$

y

x
−1−2 1 2

2

3
2

1
2

y = 1
1 + x2

).
n ! 8

% du
u*u2 " a2

!
1
a

 arcsec .u.
a

$ C

% du
a2 $ u2 !

1
a

 arctan 
u
a

$ C

% du
*a2 " u2 ! arcsin

u
a

$ C

a > 0.

% 2e2x

*9 " e 2x dx

% dx
*4 " x2 ! "arccos

x
2

$ C

% dx
25 $ x2 !

1
25

 arctan 
x

25
$ C

% dx
3x*9x2 " 16

!
1
4

 arcsec 
3x
4

$ C

u ! *x.

% 1
*6x " x2

dx.

F
xF#x$.

F
x

f #x$ !
2

x2 $ 1
.F#x$

F#x$ !
1
2%x$2

x

2
t2 $ 1

dt.

)

n ! 6
)

%1

0

4
1 $ x2 dx ! ).

%1

0
 arcsin x dx.
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■ FOR FURTHER INFORMATION For more information on 
this topic, see “What Goes Up Must Come Down; Will Air
Resistance Make It Return Sooner, or Later?” by John Lekner in
Mathematics Magazine. To view this article, go to the website 
www.matharticles.com.



■ Develop properties of hyperbolic functions.
■ Differentiate and integrate hyperbolic functions.
■ Develop properties of inverse hyperbolic functions.
■ Differentiate and integrate functions involving inverse hyperbolic functions.

Hyperbolic Functions
In this section you will look briefly at a special class of exponential functions called
hyperbolic functions. The name hyperbolic function arose from comparison of the
area of a semicircular region, as shown in Figure 5.35, with the area of a region under
a hyperbola, as shown in Figure 5.36. The integral for the semicircular region involves
an inverse trigonometric (circular) function:

The integral for the hyperbolic region involves an inverse hyperbolic function:

This is only one of many ways in which the hyperbolic functions are similar to the
trigonometric functions.

Circle: Hyperbola:
Figure 5.35 Figure 5.36

"x2 $ y2 ! 1x2 $ y2 ! 1

x
−1 1

2

y

y =    1 + x2

x
−1 1

2

y =    1 − x2

y

%1

"1
*1 $ x2 dx !

1
2+x*1 $ x2 $ sinh"1x ,

1

"1
- 2.296.

%1

"1
*1 " x2 dx !

1
2+x*1 " x2 $ arcsin x ,

1

"1
!

)
2

- 1.571.
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5.8 Hyperbolic Functions

JOHANN HEINRICH LAMBERT (1728–1777)

The first person to publish a comprehensive
study on hyperbolic functions was Johann
Heinrich Lambert, a Swiss-German 
mathematician and colleague of Euler.
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NOTE is read as “the hyperbolic sine of as “the hyperbolic cosine of and
so on. ■

x,”cosh xx,”sinh x

DEFINITIONS OF THE HYPERBOLIC FUNCTIONS

x # 0coth x !
1

tanh x
,tanh x !

sinh x
cosh x

sech x !
1

cosh x
cosh x !

ex $ e"x

2

x # 0csch x !
1

sinh x
,sinh x !

ex " e"x

2

■ FOR FURTHER INFORMATION For
more information on the development 
of hyperbolic functions, see the article 
“An Introduction to Hyperbolic
Functions in Elementary Calculus”
by Jerome Rosenthal in Mathematics
Teacher. To view this article, go to the
website www.matharticles.com.



The graphs of the six hyperbolic functions and their domains and ranges are
shown in Figure 5.37. Note that the graph of can be obtained by adding the cor-
responding -coordinates of the exponential functions and 
Likewise, the graph of can be obtained by adding the corresponding 
-coordinates of the exponential functions and h#x$ ! 1

2e"x.f #x$ ! 1
2exy

cosh x
g#x$ ! "1

2e"x.f#x$ ! 1
2exy

sinh x

Many of the trigonometric identities have corresponding hyperbolic identities.
For instance,

and

! sinh 2x.

!
e2x " e"2x

2

2 sinh x cosh x ! 2&ex " e"x

2 '&ex $ e"x

2 '

! 1

!
4
4

!
e2x $ 2 $ e"2x

4
"

e2x " 2 $ e"2x

4

cosh2 x " sinh2 x ! &ex $ e"x

2 '2
" &ex " e"x

2 '2
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y = sinh x
f(x) = ex

2

g(x) = −e−x

2

2

2

1

−1−2

−2

−1

1
x

y

Domain:
Range: #"%, %$

#"%, %$

f(x) = ex

2

y = cosh x

h(x) = e−x

2

2

2−2

−2

−1

−1 1
x

y

Domain:
Range: (1, %$

#"%, %$

2

2−1−2

−2

−1

1

1

x

y = tanh x

y

Domain:
Range: #"1, 1$

#"%, %$

y = csch x = 1
sinh x2

2

1

−1

−1 1
x

y

Domain:
Range:
Figure 5.37

#"%, 0$ $ #0, %$
#"%, 0$ $ #0, %$

2

2−1

−1

−2

−2 1
x

y = sech x = 1
cosh x

y

Domain:
Range: #0, 1)

#"%, %$

2−1−2

−1

1

1

x

y = coth x = 1
tanh x

y

Domain:
Range: #"%, "1$ $ #1, %$

#"%, 0$ $ #0, %$

■ FOR FURTHER INFORMATION To
understand geometrically the relation-
ship between the hyperbolic and
exponential functions, see the article 
“A Short Proof Linking the Hyperbolic
and Exponential Functions” by Michael
J. Seery in The AMATYC Review.



Differentiation and Integration of Hyperbolic Functions
Because the hyperbolic functions are written in terms of and you can easily
derive rules for their derivatives. The following theorem lists these derivatives with the
corresponding integration rules.

In Exercises 122–124, you are asked to prove some of the other differentiation rules.

e"x,ex
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HYPERBOLIC IDENTITIES

cosh 2x ! cosh2 x $ sinh2 xsinh 2x ! 2 sinh x cosh x

cosh2 x !
1 $ cosh 2x

2
sinh2 x !

"1 $ cosh 2x
2

cosh#x " y$ ! cosh x cosh y " sinh x sinh y

cosh#x $ y$ ! cosh x cosh y $ sinh x sinh ycoth2 x " csch2 x ! 1

sinh#x " y$ ! sinh x cosh y " cosh x sinh ytanh2 x $ sech2 x ! 1

sinh#x $ y$ ! sinh x cosh y $ cosh x sinh ycosh2 x " sinh2 x ! 1

THEOREM 5.18 DERIVATIVES AND INTEGRALS OF HYPERBOLIC FUNCTIONS

Let be a differentiable function of 

%csch u coth u du ! "csch u $ C
d
dx

(csch u) ! "#csch u coth u$u'

%sech u tanh u du ! "sech u $ C
d
dx

(sech u) ! "#sech u tanh u$u'

%csch2 u du ! "coth u $ C
d
dx

(coth u) ! "#csch2 u$u'

%sech2 u du ! tanh u $ C
d
dx

(tanh u) ! #sech2 u$u'

%sinh u du ! cosh u $ C
d
dx

(cosh u) ! #sinh u$u'

%cosh u du ! sinh u $ C
d
dx

(sinh u) ! #cosh u$u'

x.u

PROOF

■! sech2 x

!
1

cosh2 x

!
cosh x#cosh x$ " sinh x#sinh x$

cosh2 x

d
dx

(tanh x) !
d
dx+

sinh x
cosh x,

!
ex $ e"x

2
! cosh x

d
dx

(sinh x) !
d
dx+

ex " e"x

2 ,



EXAMPLE 1 Differentiation of Hyperbolic Functions

a. b.

c.

EXAMPLE 2 Finding Relative Extrema

Find the relative extrema of 

Solution Begin by setting the first derivative of equal to 0.

So, the critical numbers are and Using the Second Derivative Test, you
can verify that the point yields a relative maximum and the point 
yields a relative minimum, as shown in Figure 5.38. Try using a graphing utility to
confirm this result. If your graphing utility does not have hyperbolic functions, you
can use exponential functions, as follows.

■

When a uniform flexible cable, such as a telephone wire, is suspended from two
points, it takes the shape of a catenary, as discussed in Example 3.

EXAMPLE 3 Hanging Power Cables

Power cables are suspended between two towers, forming the catenary shown in
Figure 5.39. The equation for this catenary is

The distance between the two towers is Find the slope of the catenary at the point
where the cable meets the right-hand tower.

Solution Differentiating produces

At the point the slope (from the left) is given by 

■

m ! sinh
b
a

.#b, a cosh#b"a$$,

y' ! a&1
a' sinh

x
a

! sinh
x
a

.

2b.

y ! a cosh 
x
a

.

! 1
2#xex $ xe"x " 2ex$

! 1
2#xex $ xe"x " ex " e"x " ex $ e"x$

f#x$ ! #x " 1$#1
2$#ex $ e"x$ " 1

2#ex " e"x$

#1, "sinh 1$#0, "1$
x ! 0.x ! 1

#x " 1$ sinh x ! 0

f'#x$ ! #x " 1$ sinh x $ cosh x " cosh x ! 0

f

f#x$ ! #x " 1$ cosh x " sinh x.

d
dx

(x sinh x " cosh x) ! x cosh x $ sinh x " sinh x ! x cosh x

d
dx

(ln#cosh x$) !
sinh x
cosh x

! tanh x
d
dx

(sinh#x2 " 3$) ! 2x cosh#x2 " 3$
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■ FOR FURTHER INFORMATION In Example 3, the cable is a catenary between two supports
at the same height. To learn about the shape of a cable hanging between supports of different
heights, see the article “Reexamining the Catenary” by Paul Cella in The College Mathematics
Journal. To view this article, go to the website www.matharticles.com. ■

1

31

−2

−1−2

−3

y

x

(0, −1)

(1, −sinh 1)

f (x) = (x − 1) cosh x − sinh x

so is a relative 
maximum. so is 
a relative minimum.
Figure 5.38

#1, "sinh 1$f& #1$ > 0,
#0, "1$f& #0$ < 0,

x

y

b−b

y = a cosh x
a

a

Catenary
Figure 5.39



EXAMPLE 4 Integrating a Hyperbolic Function

Find

Solution

■

Inverse Hyperbolic Functions
Unlike trigonometric functions, hyperbolic functions are not periodic. In fact, by
looking back at Figure 5.37, you can see that four of the six hyperbolic functions are
actually one-to-one (the hyperbolic sine, tangent, cosecant, and cotangent). So, you
can apply Theorem 5.7 to conclude that these four functions have inverse functions.
The other two (the hyperbolic cosine and secant) are one-to-one if their domains are
restricted to the positive real numbers, and for this restricted domain they also
have inverse functions. Because the hyperbolic functions are defined in terms of
exponential functions, it is not surprising to find that the inverse hyperbolic functions
can be written in terms of logarithmic functions, as shown in Theorem 5.19.

!
sinh3 2x

6
$ C

!
1
2+

#sinh 2x$3

3 , $ C

u ! sinh 2x%cosh 2x sinh2 2x dx !
1
2%#sinh 2x$2#2 cosh 2x$ dx

%cosh 2x sinh2 2x dx.
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THEOREM 5.19 INVERSE HYPERBOLIC FUNCTIONS

#"%, 0$ $ #0, %$csch"1 x ! ln&1
x

$
*1 $ x2

.x. '
#0, 1)sech"1 x ! ln

1 $ *1 " x2

x

#"%, "1$ $ #1, %$coth"1 x !
1
2

 ln 
x $ 1
x " 1

#"1, 1$tanh"1 x !
1
2

 ln 
1 $ x
1 " x

(1, %$cosh"1 x ! ln#x $ *x2 " 1 $
#"%, %$sinh"1 x ! ln#x $ *x2 $ 1$
DomainFunction

PROOF The proof of this theorem is a straightforward application of the properties
of the exponential and logarithmic functions. For example, if

and

you can show that and which implies that is the inverse
function of ■f.

gg# f#x$$ ! x,f#g#x$$ ! x

g#x$ ! ln#x $ *x2 $ 1 $

f#x$ ! sinh x !
ex " e"x

2



The inverse hyperbolic secant can be used to define a curve called a tractrix or
pursuit curve, as discussed in Example 5.

The graphs of the inverse hyperbolic functions are shown in Figure 5.41.
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You can use a graphing utility to confirm graphically the
results of Theorem 5.19. For instance, graph the following functions.

Hyperbolic tangent

Definition of hyperbolic tangent

Inverse hyperbolic tangent

Definition of inverse hyperbolic tangent

The resulting display is shown in Figure 5.40. As you watch the graphs being
traced out, notice that and Also notice that the graph of is the
reflection of the graph of in the line y ! x.y3

y1y3 ! y4.y1 ! y2

y4 !
1
2

 ln 
1 $ x
1 " x

y3 ! tanh"1 x

y2 !
ex " e"x

ex $ e"x

y1 ! tanh x

TECHNOLOGY

1

1

2

2

3

3

−1
−2

−2

−3

−3

y = sinh−1 x

x

y

Domain:
Range: #"%, %$

#"%, %$

1

1

2

2

3

3

−1
−1

−2

−2

−3

−3

y = cosh−1 x

x

y

Domain:
Range: (0, %$

(1, %$

1

1

2

2

3

3

−1−2

−2

−3

−3

y = tanh−1 x

x

y

Domain:
Range: #"%, %$

#"1, 1$

1

1

2

2

3

3

−1

−3

y = csch−1 x

x

y

Domain:
Range:
Figure 5.41

#"%, 0$ $ #0, %$
#"%, 0$ $ #0, %$

1

1

2

2

3

3

−1
−2 −1

−2

−3

−3

y = sech−1 x

x

y

Domain:
Range: (0, %$

#0, 1)

1

1

2

2

3

3

−1

−2

−3

y = coth−1 x

x

y

Domain:
Range: #"%, 0$ $ #0, %$

#"%, "1$ $ #1, %$

−3 3

−2

y1 = y2

y3 = y4

2

Graphs of the hyperbolic tangent function
and the inverse hyperbolic tangent function
Figure 5.40



EXAMPLE 5 A Tractrix

A person is holding a rope that is tied to a boat, as shown in Figure 5.42. As the 
person walks along the dock, the boat travels along a tractrix, given by the equation

where is the length of the rope. If feet, find the distance the person must
walk to bring the boat to a position 5 feet from the dock.

Solution In Figure 5.42, notice that the distance the person has walked is given by

When this distance is

feet. ■

Differentiation and Integration of Inverse Hyperbolic
Functions
The derivatives of the inverse hyperbolic functions, which resemble the derivatives of
the inverse trigonometric functions, are listed in Theorem 5.20 with the corresponding
integration formulas (in logarithmic form). You can verify each of these formulas by
applying the logarithmic definitions of the inverse hyperbolic functions. (See Exercises
119–121.)

- 41.27

! 20 ln#4 $ *15 $
y1 ! 20 sech"1 5

20
! 20 ln 

1 $ *1 " #1"4$2

1"4

x ! 5,

! 20 sech"1 x
20

.

y1 ! y $ *202 " x2 ! &20 sech"1 x
20

" *202 " x2' $ *202 " x2

a ! 20a

y ! a sech"1 x
a

" *a2 " x2
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THEOREM 5.20 DIFFERENTIATION AND INTEGRATION INVOLVING
INVERSE HYPERBOLIC FUNCTIONS

Let be a differentiable function of 

% du
u*a2 ± u2

! "
1
a

 ln 
a $ *a2 ± u2

.u. $ C

% du
a2 " u2 !

1
2a

 ln.a $ u
a " u. $ C

$ C% du
*u2 ± a2

! ln#u $ *u2 ± a2 $

d
dx

(csch"1 u) !
"u'

.u.*1 $ u2

d
dx

(sech"1 u) !
"u'

u*1 " u2

d
dx

(coth"1 u) !
u'

1 " u2

d
dx

(tanh"1 u) !
u'

1 " u2

d
dx

(cosh"1 u) !
u'

*u2 " 1
d
dx

(sinh"1 u) !
u'

*u2 $ 1

x.u

x

(0, y1)

(x, y)

10 20

x

20

20
2

− 
x2

y = 20 sech−1 −    202 − x2x
20

Pe
rs

on

y

A person must walk 41.27 feet to bring the
boat to a position 5 feet from the dock.
Figure 5.42



EXAMPLE 6 More About a Tractrix

For the tractrix given in Example 5, show that the boat is always pointing toward the
person.

Solution For a point on a tractrix, the slope of the graph gives the direction of
the boat, as shown in Figure 5.42.

However, from Figure 5.42, you can see that the slope of the line segment connecting
the point with the point is also

So, the boat is always pointing toward the person. (It is because of this property that
a tractrix is called a pursuit curve.)

EXAMPLE 7 Integration Using Inverse Hyperbolic Functions

Find

Solution Let and 

EXAMPLE 8 Integration Using Inverse Hyperbolic Functions

Find

Solution Let and 

■!
1

4*5
 ln.*5 $ 2x

*5 " 2x. $ C

1
2a

 ln.a $ u
a " u. $ C!

1
2& 1

2*5
 ln.*5 $ 2x

*5 " 2x.' $ C

% du
a2 " u2% dx

5 " 4x2 !
1
2% 2 dx

#*5 $2 " #2x$2

u ! 2x.a ! *5

% dx
5 " 4x2.

"
1
a

 ln 
a $ *a2 " u2

.u. $ C! "
1
2

 ln 
2 $ *4 " 9x2

.3x. $ C

% du
u*a2 " u2% dx

x*4 " 9x2
! % 3 dx

#3x$*4 " 9x2

u ! 3x.a ! 2

% dx
x*4 " 9x2

.

m ! "
*202 " x2

x
.

#x, y$#0, y1$

! "
*202 " x2

x

!
"202

x*202 " x2
$

x
*202 " x2

! "20& 1
20'+ 1

#x"20$*1 " #x"20$2, " &1
2'& "2x

*202 " x2'
y' !

d
dx+20 sech"1 x

20
" *202 " x2,

#x, y$
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In Exercises 1–6, evaluate the function. If the value is not a
rational number, give the answer to three-decimal-place
accuracy.

1. (a) 2. (a)

(b) (b)

3. (a) 4. (a)

(b) (b)

5. (a) 6. (a)

(b) (b)

In Exercises 7–16, verify the identity.

7. 8.

9. 10.

11. 12.

13.

14.

15.

16.

In Exercises 17 and 18, use the value of the given hyperbolic
function to find the values of the other hyperbolic functions at 

17. 18.

In Exercises 19–30, find the derivative of the function.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Exercises 31–34, find an equation of the tangent line to the
graph of the function at the given point.

31. 32.

33. 34.

In Exercises 35–38, find any relative extrema of the function.
Use a graphing utility to confirm your result.

35.

36.

37. 38.

In Exercises 39 and 40, show that the function satisfies the 
differential equation.

39.

40.

Linear and Quadratic Approximations In Exercises 41 and 42,
use a computer algebra system to find the linear approximation

and the quadratic approximation

of the function at Use a graphing utility to graph the
function and its linear and quadratic approximations.

41. 42.

Catenary In Exercises 43 and 44, a model for a power cable
suspended between two towers is given. (a) Graph the model,
(b) find the heights of the cable at the towers and at the
midpoint between the towers, and (c) find the slope of the model
at the point where the cable meets the right-hand tower.

43.

44.

In Exercises 45–58, find the integral.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

In Exercises 59– 64, evaluate the integral.

59. 60.

61. 62.

63. 64. %ln 2

0
 2e"x cosh x dx%*2"4

0

2
*1 " 4x2

dx

%4

0

1
*25 " x2

dx%4

0

1
25 " x2 dx

%1

0
 cosh2 x dx%ln 2

0
 tanh x dx

% 2
x*1 $ 4x2

dx% x
x 4 $ 1

dx

% cosh x
*9 " sinh2 x

dx%csch#1"x$ coth#1"x$
x2 dx

%sech3 x tanh x dx%x csch2 x2

2
dx

%sech2#2x " 1$ dx%cosh x
sinh x

dx

% sinh x
1 $ sinh2 x

dx%cosh2#x " 1$ sinh#x " 1$ dx

%cosh *x
*x

dx%sinh#1 " 2x$ dx

% sech2 #"x$ dx% cosh 2x dx

y ! 18 $ 25 cosh 
x

25
,  "25 ( x ( 25

y ! 10 $ 15 cosh 
x

15
,  "15 ( x ( 15

a ! 0f #x$ ! cosh x,a ! 0f #x$ ! tanh x,

x ! a.f

P2/x0 ! f /a0 1 f'/a0/x " a0 1 1
2 f& /a0/x " a$2

P1/x0 ! f /a0 1 f'/a0/x " a0

y& " y ! 0y ! a cosh x

y''' " y' ! 0y ! a sinh x

Differential EquationFunction      

h#x$ ! 2 tanh x " xg#x$ ! x sech x

f #x$ ! x sinh#x " 1$ " cosh#x " 1$
"4 ≤ x ≤  4f #x$ ! sin x sinh x " cos x cosh x,

#0, 1)y ! esinh x,#0, 1)y ! #cosh x " sinh x$2,

#1, 1)y ! xcosh x,#1, 0)y ! sinh#1 " x2$,

g#x$ ! sech2 3xf #t$ ! arctan#sinh t$

h#t$ ! t " coth th#x$ !
1
4

 sinh 2x "
x
2

y ! x cosh x " sinh xy ! ln&tanh
x
2'

g#x$ ! ln#cosh x$f #x$ ! ln#sinh x$
y ! tanh#3x2 " 1$y ! sech#5x2$
f #x$ ! cosh#x " 2$f #x$ ! sinh 3x

tanh x !
1
2

sinh x !
3
2

x.

cosh x $ cosh y ! 2 cosh 
x $ y

2
 cosh 

x " y
2

sinh 3x ! 3 sinh x $ 4 sinh3 x

sinh 2x ! 2 sinh x cosh x

sinh#x $ y$ ! sinh x cosh y $ cosh x sinh y

sinh2 x !
"1 $ cosh 2x

2
cosh2 x !

1 $ cosh 2x
2

coth2 x " csch2 x ! 1tanh2 x $ sech2 x ! 1

e2x ! sinh 2x $ cosh 2xex ! sinh x $ cosh x

coth"1 3sech"1 2
3

csch"1 2cosh"1 2

tanh"1 0coth#ln 5$
sinh"1 0csch#ln 2$
sech 1tanh#"2$
cosh 0sinh 3
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5.8 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.
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75. Discuss several ways in which the hyperbolic functions are
similar to the trigonometric functions.

76. Sketch the graph of each hyperbolic function. Then identify
the domain and range of each function.

77. Which hyperbolic derivative formulas differ from their
trigonometric counterparts by a minus sign?

WRITING ABOUT CONCEPTS

In Exercises 65 –74, find the derivative of the function.

65. 66.

67. 68.

69. 70.

71.

72.

73.

74.

Limits In Exercises 79–86, find the limit.

79. 80.

81. 82.

83. 84.

85. 86.

In Exercises 87–96, find the indefinite integral using the
formulas from Theorem 5.20.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

In Exercises 97–100, evaluate the integral using the formulas
from Theorem 5.20.

97. 98.

99. 100.

In Exercises 101–104, solve the differential equation.

101.

102.

103. 104.

Area In Exercises 105–108, find the area of the region.

105. 106.

107. 108.

In Exercises 109 and 110, evaluate the integral in terms of
(a) natural logarithms and (b) inverse hyperbolic functions.

109. 110.

111. Chemical Reactions Chemicals A and B combine in a 
3-to-1 ratio to form a compound. The amount of compound 
being produced at any time is proportional to the unchanged
amounts of A and B remaining in the solution. So, if 
3 kilograms of A is mixed with 2 kilograms of B, you have

One kilogram of the compound is formed after 10 minutes. Find
the amount formed after 20 minutes by solving the equation

%3k
16

dt ! % dx
x2 " 12x $ 32

.

dx
dt

! k&3 "
3x
4 '&2 "

x
4' !

3k
16

#x2 " 12x $ 32$.

t
x

%1"2

"1"2

dx
1 " x2%*3

0

dx
*x2 $ 1

x

y

−2−4 2 4
−2

2

6

8

4
x

y

−1−2−3−4 1 2 3 4

−4

1
2
3
4

y !
6

*x2 " 4
y !

5x
*x 4 $ 1

−2 −1−3 1 2 3

−2

−3

2

1

3

x

y

−1−2−3−4 1 2 3 4

0.2
0.4
0.6

1.2
1.4

x

y

y ! tanh 2xy ! sech
x
2

dy
dx

!
1 " 2x
4x " x2

dy
dx

!
x3 " 21x

5 $ 4x " x2

dy
dx

!
1

#x " 1$*"4x2 $ 8x " 1

dy
dx

!
1

*80 $ 8x " 16x2

%1

0

1
*25x2 $ 1

dx%1

"1

1
16 " 9x2 dx

%3

1

1
x*4 $ x2

dx%7

3

1
*x2 " 4

dx

% dx
#x $ 1$*2x2 $ 4x $ 8% 1

1 " 4x " 2x2 dx

% dx
#x $ 2$*x2 $ 4x $ 8% "1

4x " x2 dx

% *x
*1 $ x3

dx% 1
*x*1 $ x

dx

% x
9 " x 4 dx% 1

*1 $ e2x
dx

% 1
2x*1 " 4x2

dx% 1
3 " 9x2 dx

lim
x→0"

 coth xlim
x→0

sinh x
x

lim
x→"%

 csch xlim
x→%

 sech x

lim
x→"%

 tanh xlim
x→%

 tanh x

lim
x→"%

 sinh xlim
x→%

 sinh x

y ! x tanh"1 x $ ln*1 " x2

y ! 2x sinh"1#2x$ " *1 $ 4x2

0 < x < )"4y ! sech"1#cos 2x$,
y ! #csch"1 x$2

y ! tanh"1#sin 2x$y ! sinh"1#tan x$
f #x$ ! coth"1#x2$y ! tanh"1*x

y ! tanh"1 x
2

y ! cosh"1#3x$

78. Which hyperbolic functions take on only positive values?
Which hyperbolic functions are increasing on their
domains?
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112. Vertical Motion An object is dropped from a height of 400 feet.

(a) Find the velocity of the object as a function of time 
(neglect air resistance on the object).

(b) Use the result in part (a) to find the position function.

(c) If the air resistance is proportional to the square of the
velocity, then where feet per
second per second is the acceleration due to gravity and 
is a constant. Show that the velocity as a function of 
time is by performing

and simplifying the result. 

(d) Use the result of part (c) to find and give its 
interpretation.

(e) Integrate the velocity function in part (c) and find the 
position of the object as a function of Use a graphing
utility to graph the position function when and
the position function in part (b) in the same viewing window.
Estimate the additional time required for the object to
reach ground level when air resistance is not neglected.

(f) Give a written description of what you believe would
happen if were increased. Then test your assertion with
a particular value of 

Tractrix In Exercises 113 and 114, use the equation of the 
tractrix

113. Find

114. Let be the tangent line to the tractrix at the point If 
intersects the axis at the point show that the distance
between and is 

115. Prove that 

116. Prove that 

117. Show that 

118. Let and Show that 

In Exercises 119–124, verify the differentiation formula.

119. 120.

121. 122.

123.

124.
d
dx

(sech x) ! "sech x tanh x

d
dx

(coth x) ! "csch2 x

d
dx

(cosh x) ! sinh x
d
dx

(sinh"1 x) !
1

*x2 $ 1

d
dx

(cosh"1 x) !
1

*x2 " 1
d
dx

(sech"1 x) !
"1

x*1 " x2

%b

"b
ext dt !

2 sinh bx
x

.b > 0.x > 0

arctan#sinh x$ ! arcsin#tanh x$.
sinh"1 t ! ln#t $ *t2 $ 1 $.

"1 < x < 1.tanh"1 x !
1
2

 ln&1 $ x
1 " x',

a.QP
Q,y-

LP.L

dy"dx.

a > 0.y ! a sech"1 /x/a0 " *a2 " x2,

k.
k

k ! 0.01
t.s

lim
t→%

v#t$
! dv"#32 " kv2$ ! "! dt

v#t$ ! "*32"k tanh#*32k t$
v

k
"32dv"dt ! "32 $ kv2,
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125. From the vertex of the catenary a
line is drawn perpendicular to the tangent to the catenary
at a point Prove that the length of intercepted by the
axes is equal to the ordinate of the point 

126. Prove or disprove that there is at least one straight line 
normal to the graph of at a point 
and also normal to the graph of at a point

At a point on a graph, the normal line is the perpendicular
to the tangent at that point. Also,
and

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

sinh x ! #ex " e"x$"2.)
cosh x ! #ex $ e"x$"2

(
#c, sinh c$.

y ! sinh x
#a, cosh a$y ! cosh x

P.y
LP.

L
y ! c cosh #x"c$#0, c$

PUTNAM EXAM CHALLENGE

The Gateway Arch in St. Louis, Missouri was constructed using the
hyperbolic cosine function. The equation used for construction was

where and are measured in feet. Cross sections of the arch are
equilateral triangles, and traces the path of the centers of mass
of the cross-sectional triangles. For each value of the area of the
cross-sectional triangle is 
(Source: Owner’s Manual for the Gateway Arch, Saint Louis, MO,
by William Thayer)

(a) How high above the ground is the center of the highest triangle?
(At ground level, )

(b) What is the height of the arch? (Hint: For an equilateral 
triangle, where is one-half the base of the 
triangle, and the center of mass of the triangle is located at 
two-thirds the height of the triangle.)

(c) How wide is the arch at ground level?

cA ! *3c2,

y ! 0.

A ! 125.1406 cosh 0.0100333x.
x,

#x, y$
yx

"299.2239 ( x ( 299.2239

y ! 693.8597 " 68.7672 cosh 0.0100333x,

St. Louis Arch
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In Exercises 1 and 2, sketch the graph of the function by hand.
Identify any asymptotes of the graph.

1. 2.

In Exercises 3 and 4, use the properties of logarithms to expand
the logarithmic function.

3. 4.

In Exercises 5 and 6, write the expression as the logarithm of a
single quantity.

5.

6.

In Exercises 7 and 8, solve the equation for 

7. 8.

In Exercises 9–14, find the derivative of the function.

9. 10.

11. 12.

13.

14.

In Exercises 15 and 16, find an equation of the tangent line to
the graph of the function at the given point.

15. 16.

In Exercises 17–24, find or evaluate the integral.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–30, (a) find the inverse function of (b) use a
graphing utility to graph and in the same viewing window,
(c) verify that and and (d) state
the domains and ranges of and 

25. 26.

27. 28.

29. 30.

In Exercises 31–34, verify that has an inverse. Then use the
function and the given real number to find (Hint:
Use Theorem 5.9.)

31. 32.

33.

34.

In Exercises 35 and 36, (a) find the inverse function of (b) use
a graphing utility to graph and in the same viewing 
window, (c) verify that and and
(d) state the domains and ranges of and 

35. 36.

In Exercises 37 and 38, graph the function without the aid of a
graphing utility.

37. 38.

In Exercises 39– 44, find the derivative of the function.

39. 40.

41. 42.

43. 44.

In Exercises 45 and 46, find an equation of the tangent line to
the graph of the function at the given point.

45. 46.

In Exercises 47 and 48, use implicit differentiation to find 

47. 48.

In Exercises 49–56, find or evaluate the integral.

49. 50.

51. 52. % e2x " e"2x

e2x $ e"2x dx% e4x " e2x $ 1
ex dx

%2

1"2

e1"x

x2 dx%1

0
xe"3x 2 dx

cos x2 ! xeyy ln x $ y 2 ! 0

dy/dx.

&0,
1
2'f #-$ !

1
2

esin 2-,#2, "4$f #x$ ! ln#e"x2$,

y ! 3e"3"tg#x$ !
x2

ex

h#z$ ! e"z2"2y ! *e2x $ e"2x

g#x$ ! ln
ex

1 $ exg#t$ ! t2et

y ! e"x2y ! e"x"2

f #x$ ! e1"xf #x$ ! ln*x

f "1.f
f / f "1/x00 ! x,f "1/ f /x00 ! x

f "1f
f,

a ! 00 ( x ( ),f #x$ ! cos x,

a !
*3
3

"
)
4

( x (
)
4

,f #x$ ! tan x,

a ! 4f #x$ ! x*x " 3,a ! "1f #x$ ! x3 $ 2,

/ f "10' /a0.af
f

x ≥  0f #x$ ! x2 " 5,f #x$ ! 3*x $ 1

f #x$ ! x3 $ 2f #x$ ! *x $ 1

f #x$ ! 5x " 7f #x$ ! 1
2x " 3

f "1.f
f / f "1/x00 ! x,f "1/ f /x00 ! x

f "1f
f,

%)"4

0
tan&)

4
" x' dx%)"3

0
sec - d-

%e

1

ln x
x

dx%4

1

2x $ 1
2x

dx

% ln *x
x

dx% sin x
1 $ cos x

dx

% x
x2 " 1

dx% 1
7x " 2

dx

(1, ln 2)

1 2 3

1

2

3

x

y

x

y

(−1, 2)

−1−2 1 2

1

2

3

4

y ! ln
1 $ x

x
y ! ln#2 $ x$ $

2
2 $ x

y ! "
1
ax

$
b
a2 ln 

a $ bx
x

y !
1
b2 (a $ bx " a ln#a $ bx$)

f #x$ ! ln(x#x2 " 2$2"3)f #x$ ! x*ln x

h#x$ ! ln
x#x " 1$

x " 2
g#x$ ! ln*2x

ln x $ ln#x " 3$ ! 0ln *x $ 1 ! 2

x.

3(ln x " 2 ln#x2 $ 1$) $ 2 ln 5

ln 3 $ 1
3 ln#4 " x2$ " ln x

ln(#x2 $ 1$#x " 1$)ln 5*4x2 " 1
4x2 $ 1

f #x$ ! ln#x $ 3$f #x$ ! ln x " 3
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53. 54.

55. 56.

57. Show that satisfies the differential
equation

58. Depreciation The value of an item years after it is
purchased is 

(a) Use a graphing utility to graph the function.

(b) Find the rates of change of with respect to when 
and

(c) Use a graphing utility to graph the tangent lines to the
function when and 

In Exercises 59 and 60, find the area of the region bounded by
the graphs of the equations.

59.

60.

In Exercises 61–64, sketch the graph of the function by hand.

61. 62.

63. 64.

In Exercises 65–70, find the derivative of the function.

65. 66.

67. 68.

69. 70.

In Exercises 71 and 72, find the indefinite integral.

71. 72.

73. Climb Rate The time (in minutes) for a small plane to climb
to an altitude of feet is

where 18,000 feet is the plane’s absolute ceiling.

(a) Determine the domain of the function appropriate for the
context of the problem.

(b) Use a graphing utility to graph the time function and
identify any asymptotes.

(c) Find the time when the altitude is increasing at the greatest
rate.

74. Compound Interest

(a) How large a deposit, at 5% interest compounded 
continuously, must be made to obtain a balance of $10,000
in 15 years?

(b) A deposit earns interest at a rate of percent compounded
continuously and doubles in value in 10 years. Find 

In Exercises 75 and 76, sketch the graph of the function.

75. 76.

In Exercises 77 and 78, evaluate the expression without using a
calculator. (Hint: Make a sketch of a right triangle.)

77. (a) 78. (a)

(b) (b)

In Exercises 79– 84, find the derivative of the function.

79. 80.

81. 82.

83.

84.

In Exercises 85–90, find the indefinite integral.

85. 86.

87. 88.

89. 90.

In Exercises 91 and 92, find the area of the region.

91. 92.

93. Harmonic Motion A weight of mass is attached to a spring
and oscillates with simple harmonic motion. By Hooke’s Law,
you can determine that

where is the maximum displacement, is the time, and is a
constant. Find as a function of given that when 

In Exercises 94 and 95, find the derivative of the function.

94. 95.

In Exercises 96 and 97, find the indefinite integral.

96. 97. % x2 sech2 x3 dx% x
*x4 " 1

dx

y ! x tanh"1 2xy ! 2x " cosh *x

t ! 0.y ! 0t,y
ktA

% dy
*A2 " y 2

! %* k
m

dt

m

x

y

−3−4 1 2 3 4

−0.4
−0.3
−0.2

0.1
0.2
0.3
0.4

x

y

−1−2 1 2

1

2

3

4

y !
x

16 $ x2y !
4 " x

*4 " x2

% arcsin 2x
*1 " 4x2

dx% arctan#x"2$
4 $ x2 dx

% 1
16 $ x2 dx% x

*1 " x4
dx

% 1
3 $ 25x2 dx% 1

e2x $ e"2x dx

2 < x < 4y ! *x2 " 4 " 2 arcsec 
x
2

,

y ! x#arcsin x$2 " 2x $ 2*1 " x2 arcsin x

y ! 1
2 arctan e2xy ! x arcsec x

y ! arctan#x2 " 1$y ! tan#arcsin x$

cos#arcsec *5 $cos#arcsin 1
2$

tan#arccot 2$sin#arcsin 1
2$

h#x$ ! "3 arcsin 2xf #x$ ! 2 arctan#x $ 3$

r.
r

t ! 50 log10
18,000

18,000 " h

h
t

%2"1"t

t2 dt%#x $ 1$5#x$1$2 dx

h#x$ ! log5
x

x " 1
g#x$ ! log3 *1 " x

y ! x#4"x$y ! x2x$1

f #x$ ! #4e$xf #x$ ! 3x"1

y ! log4 x2y ! log2#x " 1$
y ! 6#2"x2 $y ! 3 x"2

x ! 2x ! 0,y ! 0,y ! 2e"x,

x ! 4x ! 0,y ! 0,y ! xe"x 2,

t ! 4.t ! 1

t ! 4.
t ! 1tV

0 ( t ( 5.V ! 9000e"0.6t,
tV

y& " 2y' $ 10y ! 0.
y ! ex #a cos 3x $ b sin 3x$

%2

0

e2x

e2x $ 1
dx%3

1

ex

e x " 1
dx

% x2e x 3$1 dx%xe1"x2 dx
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1. Find the value of that maximizes the angle shown in the 
figure. What is the approximate measure of this angle?

2. Recall that the graph of a function is symmetric with
respect to the origin if, whenever is a point on the graph,

is also a point on the graph. The graph of the function
is symmetric with respect to the point if, when-

ever is a point on the graph, is
also a point on the graph, as shown in the figure.

(a) Sketch the graph of on the interval Write a
short paragraph explaining how the symmetry of the graph
with respect to the point allows you to conclude that

(b) Sketch the graph of on the interval 
Use the symmetry of the graph with respect to the point

to evaluate the integral 

(c) Sketch the graph of on the interval 
Use the symmetry of the graph to evaluate the integral 

(d) Evaluate the integral

3. (a) Use a graphing utility to graph on the 

interval 

(b) Use the graph to estimate 

(c) Use the definition of derivative to prove your answer to
part (b).

4. Let

(a) Determine the domain of the function 

(b) Find two values of satisfying 

(c) Find two values of satisfying 

(d) What is the range of the function 

(e) Calculate and use calculus to find the maximum value
of on the interval 

(f ) Use a graphing utility to graph in the viewing window
and estimate if it exists.

(g) Determine analytically, if it exists.

5. Graph the exponential function for 1.2, and 2.0.
Which of these curves intersects the line Determine all
positive numbers for which the curve intersects the line

6. (a) Let be a point on the unit circle in
the first quadrant (see figure). Show that is equal to twice
the area of the shaded circular sector 

(b) Let be a point on the unit hyperbola
in the first quadrant (see figure). Show that is

equal to twice the area of the shaded region Begin by
showing that the area of the shaded region is given by
the formula 

7. Apply the Mean Value Theorem to the function on
the closed interval Find the value of in the open interval

such that

8. Show that is a decreasing function for and

n > 0.

x > ef #x$ !
ln xn

x

f'#c$ !
f #e$ " f #1$

e " 1
.

#1, e$
c(1, e).

f #x$ ! ln x

x

1

1O

P

A(1, 0)

y

t

A#t$ !
1
2

 cosh t sinh t " %cosh t

1
*x2 " 1 dx.

AOP
AOP.

tx2 " y2 ! 1
P#cosh t, sinh t$

x

1

1O

P

A(1, 0)t

y

AOP.
t

x2 $ y2 ! 1P#cos t, sin t$
y ! x.

y ! a xa
y ! x?
a ! 0.5,y ! ax

lim
x→0$

f #x$
lim

x→0$
f #x$,(0, 5) 2 ("2, 2)

f

(1, 10).f
f'#x$

f?

f #x$ ! "1.x

f #x$ ! 1.x

f.

f #x$ ! sin#ln x$.

lim
x→0

f #x$.
("1, 1).

f #x$ !
ln#x $ 1$

x

%)"2

0

1
1 $ #tan x$*2

dx.

%1

"1
arccos x dx.

("1, 1).y ! arccos x

%2)

0
#sin x $ 2$ dx.

#), 2$

(0, 2)).y ! sin x $ 2

%2)

0
sin x dx ! 0.

#0, )$

(0, 2)).y ! sin x

x

(a, b)

(a − x, b − y)

(a + x, b + y)

y

#a $ x, b $ y$#a " x, b " y$
/a, b0y ! f #x$

#"x, "y$
#x, y$

y ! f #x$

0 10

3

6

θ

a

-a
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9. Consider the three regions and determined by the graph
of as shown in the figure.

(a) Calculate the areas of regions and 

(b) Use your answers in part (a) to evaluate the integral 

(c) Use your answers in part (a) to evaluate the integral 

(d) Use your answers in part (a) to evaluate the integral 

10. Let be the tangent line to the graph of the function 
at the point Show that the distance between and is
always equal to 1.

Figure for 10 Figure for 11

11. Let be the tangent line to the graph of the function at
the point Show that the distance between and is
always equal to 1.

12. The Gudermannian function of is 

(a) Graph gd using a graphing utility.

(b) Show that gd is an odd function.

(c) Show that gd is monotonic and therefore has an inverse.

(d) Find the inflection point of gd.

(e) Verify that 

(f) Verify that 

13. Use integration by substitution to find the area under the curve 

between and 

14. Use integration by substitution to find the area under the curve 

between and 

15. (a) Use a graphing utility to compare the graph of the function
with the graph of each given function.

(i)

(ii)

(iii)

(b) Identify the pattern of successive polynomials in part (a)
and extend the pattern one more term and compare the
graph of the resulting polynomial function with the graph
of

(c) What do you think this pattern implies?

16. A $120,000 home mortgage for 35 years at has a monthly
payment of $985.93. Part of the monthly payment goes for the
interest charge on the unpaid balance and the remainder of the
payment is used to reduce the principal. The amount that goes
for interest is 

and the amount that goes toward reduction of the principal is

In these formulas, is the amount of the mortgage, is the
interest rate, is the monthly payment, and is the time in
years.

(a) Use a graphing utility to graph each function in the same
viewing window. (The viewing window should show all 35
years of mortgage payments.)

(b) In the early years of the mortgage, the larger part of the
monthly payment goes for what purpose? Approximate the
time when the monthly payment is evenly divided between
interest and principal reduction.

(c) Use the graphs in part (a) to make a conjecture about the
relationship between the slopes of the tangent lines to the
two curves for a specified value of Give an analytical
argument to verify your conjecture. Find and 

(d) Repeat parts (a) and (b) for a repayment period of 20 years
What can you conclude?#M ! $1118.56$.

v'#15$.u'#15$
t.

tM
rP

v ! &M "
Pr
12' &1 $

r
12'

12t
.

u ! M " &M "
Pr
12' &1 $

r
12'

12t

91
2%

y ! ex.

y3 ! 1 $
x
1!

$
x2

2!
$

x3

3!

y2 ! 1 $
x
1!

$
x2

2!

y1 ! 1 $
x
1!

y ! ex

x ! )"4.x ! 0

y !
1

sin2 x $ 4 cos2 x

x ! 4.x ! 1

y !
1

*x $ x

gd#x$ ! %x

0

dx
cosh t

.

gd#x) ! arcsin#tanh x$.

gd#x$ ! arctan#sinh x$.x

ca#a, b$.
y ! exL

xa

b

c

L

y

xa

b

c

L

y

cb#a, b$.
y ! ln xL

%*3

1
 arctan x dx.

%3

1
ln x dx.

%*2"2

1"2
 arcsin x dx.

B.A

x

A

CB

y

1
π
4

11
2

2
2

π
6

f #x$ ! arcsin x,
CB,A,
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