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6 Differential Equations

A function is a solution of a differential equation if the equation is satisfied when and its derivatives are
replaced by and its derivatives. One way to solve a differential equation is to use slope fields, which show the general
shape of all solutions of a differential equation. (See Section 6.1.)
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In this chapter, you will study one of the
most important applications of calculus—
differential equations. You will learn 
several methods for solving different 
types of differential equations, such 
as homogeneous, first-order linear, and
Bernoulli. Then you will apply these 
methods to solve differential equations 
in applied problems.

In this chapter, you should learn the 
following.

■ How to sketch a slope field of a 
differential equation, and find a 
particular solution. (6.1)

■ How to use an exponential function 
to model growth and decay. (6.2)

■ How to use separation of variables 
to solve a differential equation. (6.3)

■ How to solve a first-order linear 
differential equation and a Bernoulli 
differential equation. (6.4)

Depending on the type of bacteria, the time it takes for a culture’s weight to double
can vary greatly from several minutes to several days. How could you use a 
differential equation to model the growth rate of a bacteria culture’s weight? (See
Section 6.3, Exercise 84.)

■

■



■ Use initial conditions to find particular solutions of differential equations.
■ Use slope fields to approximate solutions of differential equations.
■ Use Euler’s Method to approximate solutions of differential equations.

General and Particular Solutions
In this text, you will learn that physical phenomena can be described by differential
equations. Recall that a differential equation in and is an equation that involves

and derivatives of In Section 6.2, you will see that problems involving 
radioactive decay, population growth, and Newton’s Law of Cooling can be formulated
in terms of differential equations.

A function is called a solution of a differential equation if the equation
is satisfied when and its derivatives are replaced by and its derivatives. For
example, differentiation and substitution would show that is a solution of the
differential equation It can be shown that every solution of this
differential equation is of the form 

General solution of 

where is any real number. This solution is called the general solution. Some
differential equations have singular solutions that cannot be written as special cases
of the general solution. However, such solutions are not considered in this text. The
order of a differential equation is determined by the highest-order derivative in the
equation. For instance, is a first-order differential equation. First-order linear
differential equations are discussed in Section 6.4.

In Section 4.1, Example 8, you saw that the second-order differential equation
has the general solution

General solution of 

which contains two arbitrary constants. It can be shown that a differential equation of
order has a general solution with arbitrary constants.

EXAMPLE 1 Verifying Solutions

Determine whether the function is a solution of the differential equation 

a. b. c.

Solution

a. Because and it follows that

So, is a solution.

b. Because and it follows that

So, is a solution.

c. Because and it follows that

So, is a solution for any value of ■C.y ! Cex

y" # y ! Cex # Cex ! 0.

y" ! Cex,y$ ! Cex,y ! Cex,

y ! 4e#x

y" # y ! 4e#x # 4e#x ! 0.

y" ! 4e#x,y$ ! #4e#x,y ! 4e#x,

noty ! sin x

y" # y ! #sin x # sin x ! #2 sin x % 0.

y" ! #sin x,y$ ! cos x,y ! sin x,

y ! Cexy ! 4e#xy ! sin x

y" # y ! 0.

nn

s" !t" ! #32s!t" ! #16t2 & C1t & C2

s" !t" ! #32

y$ ! 4y

C

y$ & 2y ! 0y ! Ce#2x

y$ & 2y ! 0.
y ! e#2x

f!x"y
y ! f!x"

y.y,x,
yx
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Geometrically, the general solution of a first-order differential equation
represents a family of curves known as solution curves, one for each value assigned
to the arbitrary constant. For instance, you can verify that every function of the form

General solution of 

is a solution of the differential equation Figure 6.1 shows four of the
solution curves corresponding to different values of 

As discussed in Section 4.1, particular solutions of a differential equation are
obtained from initial conditions that give the values of the dependent variable or one
of its derivatives for particular values of the independent variable. The term “initial
condition” stems from the fact that, often in problems involving time, the value of the
dependent variable or one of its derivatives is known at the initial time
For instance, the second-order differential equation having the general
solution

General solution of 

might have the following initial conditions.

Initial conditions

In this case, the initial conditions yield the particular solution

Particular solution

EXAMPLE 2 Finding a Particular Solution

For the differential equation verify that is a solution, and find
the particular solution determined by the initial condition when 

Solution You know that is a solution because and

Furthermore, the initial condition when yields

General solution

Substitute initial condition.

Solve for 

and you can conclude that the particular solution is 

Particular solution

Try checking this solution by substituting for and in the original differential
equation. ■

y$y

y ! #
2x3

27
.

C.#
2

27
! C

 2 ! C!#3"3

y ! Cx3

x ! #3y ! 2

! 0.

xy$ # 3y ! x!3Cx2" # 3!Cx3"

y$ ! 3Cx2y ! Cx3

x ! #3.y ! 2
y ! Cx3xy$ # 3y ! 0,

s!t" ! #16t2 & 64t & 80.

s$!0" ! 64s!0" ! 80,

s"!t" ! #32s!t" ! #16t2 & C1t & C2

s" !t" ! #32
t ! 0.

C.
xy$ & y ! 0.

xy$ & y ! 0y !
C
x
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21

2

1

−1

−1−2
x

C = 2

C = 1

C = −1

C = −2

xy = C
C = −2

C = −1

C = 2

C = 1

General
solution:

y

Solution curves for 
Figure 6.1

xy$ & y ! 0

NOTE To determine a particular solution, the number of initial conditions must match the
number of constants in the general solution. ■

The icon indicates that you will find a CAS Investigation on the book’s website. The CAS
Investigation is a collaborative exploration of this example using the computer algebra systems
Maple and Mathematica.



Slope Fields
Solving a differential equation analytically can be difficult or even impossible.
However, there is a graphical approach you can use to learn a lot about the solution of
a differential equation. Consider a differential equation of the form

Differential equation

where is some expression in and At each point in the -plane where
is defined, the differential equation determines the slope of the solution

at that point. If you draw short line segments with slope at selected points 
in the domain of then these line segments form a slope field, or a direction field,
for the differential equation Each line segment has the same slope as the
solution curve through that point. A slope field shows the general shape of all 
the solutions and can be helpful in getting a visual perspective of the directions of the
solutions of a differential equation.

EXAMPLE 3 Sketching a Slope Field

Sketch a slope field for the differential equation for the points 
and

Solution The slope of the solution curve at any point is So,
the slope at is the slope at is 
and the slope at is Draw short line segments at the three points
with their respective slopes, as shown in Figure 6.2.

EXAMPLE 4 Identifying Slope Fields for Differential Equations

Match each slope field with its differential equation.

a. b. c.

Figure 6.3

i. ii. iii.

Solution

a. In Figure 6.3(a), you can see that the slope at any point along the -axis is 0. The
only equation that satisfies this condition is So, the graph matches 
equation (ii).

b. In Figure 6.3(b), you can see that the slope at the point is 0. The only
equation that satisfies this condition is So, the graph matches 
equation (i).

c. In Figure 6.3(c), you can see that the slope at any point along the -axis is 0. The
only equation that satisfies this condition is So, the graph matches 
equation (iii).

■

y$ ! y.
x

y$ ! x & y.
!1, #1"

y$ ! x.
y

y$ ! yy$ ! xy$ ! x & y

x

y

2

−2

2−2
x

y

2

−2

2−2
x

y

2

−2

2−2

y$ ! 1 # 1 ! 0.!1, 1"
y$ ! 0 # 1 ! #1,!0, 1"y$ ! #1 # 1 ! #2,!#1, 1"

F!x, y" ! x # y.!x, y"

!1, 1".!0, 1",
!#1, 1",y$ ! x # y

y$ ! F!x, y".
F,

!x, y"F!x, y"
y$ ! F!x, y"F

xy!x, y"y.xF!x, y"

y$ ! F!x, y"
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A solution curve of a differential equation is simply a curve in the
-plane whose tangent line at each point has slope equal to This is

illustrated in Example 5.

EXAMPLE 5 Sketching a Solution Using a Slope Field

Sketch a slope field for the differential equation

Use the slope field to sketch the solution that passes through the point 

Solution Make a table showing the slopes at several points. The table shown is 
a small sample. The slopes at many other points should be calculated to get a 
representative slope field.

Next draw line segments at the points with their respective slopes, as shown in
Figure 6.4.

Slope field for Particular solution for 
Figure 6.4 passing through 

Figure 6.5

After the slope field is drawn, start at the initial point and move to the right in
the direction of the line segment. Continue to draw the solution curve so that it moves
parallel to the nearby line segments. Do the same to the left of The resulting
solution is shown in Figure 6.5. ■

In Example 5, note that the slope field shows that increases to infinity as 
increases.

xy$

!1, 1".

!1, 1"

!1, 1"
y$ ! 2x & yy$ ! 2x & y

x

2

2−2

−2

y

x

2

2−2

−2

y

!1, 1".

y$ ! 2x & y.

F!x, y".!x, y"xy
y$ ! F!x, y"
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x #2 #2 #1 #1 0 0 1 1 2 2

y #1 1 #1 1 #1 1 #1 1 #1 1

y$ ! 2x 1 y #5 #3 #3 #1 #1 1 1 3 3 5

NOTE Drawing a slope field by hand is tedious. In practice, slope fields are usually drawn
using a graphing utility. ■



Euler’s Method
Euler’s Method is a numerical approach to approximating the particular solution of
the differential equation

that passes through the point From the given information, you know that the
graph of the solution passes through the point and has a slope of at
this point. This gives you a “starting point” for approximating the solution.

From this starting point, you can proceed in the direction indicated by the slope.
Using a small step move along the tangent line until you arrive at the point 
where

and

as shown in Figure 6.6. If you think of as a new starting point, you can repeat
the process to obtain a second point The values of and are as follows.

EXAMPLE 6 Approximating a Solution Using Euler’s Method

Use Euler’s Method to approximate the particular solution of the differential equation 

passing through the point Use a step of 

Solution Using and you have 
.  .  . , and

The first ten approximations are shown in the table. You can plot these values to see a
graph of the approximate solution, as shown in Figure 6.7.

■

y3 ! y2 & hF!x2, y2" ! 0.82 & !0.1"!0.2 # 0.82" ! 0.758.

y2 ! y1 & hF!x1, y1" ! 0.9 & !0.1"!0.1 # 0.9" ! 0.82

y1 ! y0 & hF!x0, y0" ! 1 & !0.1"!0 # 1" ! 0.9

x3 ! 0.3,x2 ! 0.2,x1 ! 0.1,
x0 ! 0,F!x, y" ! x # y,y0 ! 1,x0 ! 0,h ! 0.1,

h ! 0.1.!0, 1".

y$ ! x # y

yn ! yn#1 & hF!xn#1, yn#1"xn ! xn#1 & h
!!

y2 ! y1 & hF!x1, y1"x2 ! x1 & h

y1 ! y0 & hF!x0, y0"x1 ! x0 & h

yixi!x2, y2".
!x1, y1"

y1 ! y0 & hF!x0, y0"x1 ! x0 & h

!x1, y1",h,

F!x0, y0"!x0, y0"
!x0, y0".

y$ ! F!x, y"
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NOTE You can obtain better approximations of the exact solution by choosing smaller and
smaller step sizes. ■

n 0 1 2 3 4 5 6 7 8 9 10

xn 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

yn 1 0.900 0.820 0.758 0.712 0.681 0.663 0.657 0.661 0.675 0.697

NOTE For the differential equation in Example 6, you can verify the exact solution to be
Figure 6.7 compares this exact solution with the approximate solution

obtained in Example 6.
y ! x # 1 & 2e#x.

y

x
1.00.80.60.40.2

1.0

0.8

0.6

0.4

0.2

Exact
solution

Approximate
solution

Figure 6.7

x

y

Exact solution
curve

Euler
approximation

(x1, y1)

(x2, y2)

hF(x0, y0)

x0

y0

x0 + h

Slope F(x0, y0)
h

Figure 6.6



In Exercises 1–8, verify the solution of the differential equation.

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–12, verify the particular solution of the
differential equation.

9.

10.

11.

12.

In Exercises 13–20, determine whether the function is a solution
of the differential equation 

13.

14.

15.

16.

17.

18.

19.

20.

In Exercises 21–28, determine whether the function is a solution
of the differential equation 

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–32, some of the curves corresponding to
different values of in the general solution of the differential
equation are given. Find the particular solution that passes
through the point shown on the graph.

29.

30.

31.

32.

Figure for 29 Figure for 30

Figure for 31 Figure for 32

In Exercises 33 and 34, the general solution of the differential
equation is given. Use a graphing utility to graph the particular
solutions for the given values of 

33. 34.

In Exercises 35– 40, verify that the general solution satisfies the
differential equation. Then find the particular solution that
satisfies the initial condition.

35. 36.

when when 

37. 38.

when when 

when when x ! 2y$ ! 1
2x ! '#6y$ ! 1

x ! 2y ! 0x ! '#6y ! 2

xy" & y$ ! 0y" & 9y ! 0

y ! C1 & C2 ln xy ! C1 sin 3x & C2 cos 3x

x ! 1y ! 3x ! 0y ! 3

3x & 2yy$ ! 0y$ & 2y ! 0

3x2 & 2y2 ! Cy ! Ce#2x

C ! 4C ! 1,C ! 0,C ! ±4C ! ±1,C ! 0,

x2 & y2 ! C4y2 # x2 ! C

yy$ & x ! 04yy$ # x ! 0

C.

x
3 4−3−4

4

3

2

−2

−3

−4

(3, 4)

y

x
3 4 5 6 7−1

4

3

2

1

−2

−3

−4

(4, 4)

y

x

(0, 2)4

2 4−2−4

y

x
1−1−2

2

(0, 3)

y

2 3

yy$ # 2x ! 02x2 # y2 ! C

2xy$ # 3y ! 0y2 ! Cx3

2xy & !x2 & 2y"y$ ! 0y!x2 & y" ! C

2y$ & y ! 0y ! Ce#x#2

Differential EquationSolution

C

y ! x2ex # 5x2y ! ln x

y ! cos xy ! sin x

y ! x2!2 & ex"y ! x2ex

y ! x3y ! x2

xy$ " 2y ! x3ex.

y ! 3e2x # 4 sin 2x

y ! C1e2x & C2e#2x & C3 sin 2x & C4 cos 2x

y ! 5 ln x

y ! e#2x

y ! 3 sin 2x

y ! 3 cos 2x

y ! 2 sin x

y ! 3 cos x

y$4% " 16y ! 0.

y&'
2' ! 1

y$ ! y sin xy ! e#cos x

y!0" ! 4

y$ ! #12xyy ! 4e#6x2

y!0" ! #5

y$ ! x & 2 sin xy ! 1
2 x2 # 2 cos x # 3

y&'
4' ! 0

2y & y$ ! 2 sin!2x" # 1y ! sin x cos x # cos2 x

and Initial ConditionSolution                         
Differential Equation

y" & 4y$ ! 2exy ! 2
5!e#4x & ex"

y" & y ! tan xy ! #cos x ln(sec x & tan x(
y" & 2y$ & 2y ! 0y ! C1e#x cos x & C2e#x sin x

y" & y ! 0y ! C1 sin x # C2 cos x

dy
dx

!
xy

y2 # 1
y2 # 2 ln y ! x2

y$ ! 2xy#!x2 # y2"x2 & y2 ! Cy

3y$ & 5y ! #e#2xy ! e#2x

y$ ! 4yy ! Ce4x

Differential EquationSolution                                    
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6.1 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.



39. 40.

when when 

when when 

In Exercises 41–52, use integration to find a general solution of
the differential equation.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

Slope Fields In Exercises 53–56, a differential equation and its
slope field are given. Complete the table by determining the
slopes (if possible) in the slope field at the given points.

53. 54.

55. 56.

In Exercises 57– 60, match the differential equation with its
slope field. [The slope fields are labeled (a), (b), (c), and (d).]

(a) (b)

(c) (d)

57. 58.

59. 60.

Slope Fields In Exercises 61–64, (a) sketch the slope field for
the differential equation, (b) use the slope field to sketch the
solution that passes through the given point, and (c) discuss the
graph of the solution as and Use a graphing
utility to verify your results.

61.

62.

63.

64.

65. Slope Field Use the slope field for the differential equation
where to sketch the graph of the solution that

satisfies each given initial condition. Then make a conjecture
about the behavior of a particular solution of 
as To print an enlarged copy of the graph, go to the
website www.mathgraphs.com.

(a) (b) !2, #1"!1, 0"

x

y

3

2

1

−3

−2

−1
6

x →(.
y$ ! 1#x

x > 0,y$ ! 1#x,

!0, #4"y$ ! y & xy,

!2, 2"y$ ! y # 4x,

!1, 1"y$ ! 1
3 x2 # 1

2 x,

!4, 2"y$ ! 3 # x,

x → "#.x →#

dy
dx

!
1
x

dy
dx

! e#2x

dy
dx

!
1
2

 cos x
dy
dx

! sin!2x"

x

y

2

−1

− 3
2

3
2

x

y

3

−3

3−3

x

y

3

−3

3−3
x

y

2−2

2

−2

y

8

8

−8

x
−8

x
−10 10

−6

14

y

dy
dx

! tan&'y
6 'dy

dx
! x cos 

'y
8

x

y

8−8

10

−6

x
10

−6

14

y

−10

dy
dx

! y # x
dy
dx

!
2x
y

dy
dx

! 5e#x#2dy
dx

! xe x 2

dy
dx

! 2x)3 # x
dy
dx

! x)x # 6

dy
dx

! tan2 x
dy
dx

! sin 2x

dy
dx

! x cos x2dy
dx

!
x # 2

x

dy
dx

!
ex

4 & ex

dy
dx

!
x

1 & x2

dy
dx

! 2x3 # 3x
dy
dx

! 6x2

x ! 3y ! 0x ! 2y$ ! 4

x ! 0y ! 4x ! 2y ! 0

9y" # 12y$ & 4y ! 0x2y" # 3xy$ & 3y ! 0

y ! e2x#3!C1 & C2x"y ! C1x & C2x3
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x #4 #2 0 2 4 8

y 2 0 4 4 6 8

dy/dx



66. Slope Field Use the slope field for the differential equation
where to sketch the graph of the solution that

satisfies each initial condition. Then make a conjecture about
the behavior of a particular solution of as 
To print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(a) (b)

Slope Fields In Exercises 67–72, use a computer algebra 
system to (a) graph the slope field for the differential equation
and (b) graph the solution satisfying the specified initial 
condition.

67.

68.

69.

70.

71.

72.

Euler’s Method In Exercises 73–78, use Euler’s Method to
make a table of values for the approximate solution of the
differential equation with the specified initial value. Use steps
of size 

73.

74.

75.

76.

77.

78.

In Exercises 79– 81, complete the table using the exact solution
of the differential equation and two approximations obtained
using Euler’s Method to approximate the particular solution of
the differential equation. Use and and compute
each approximation to four decimal places.

Table for 79–81

79.

80.

81.

82. Compare the values of the approximations in Exercises 79–81
with the values given by the exact solution. How does the error
change as increases?

83. Temperature At time minutes, the temperature of an
object is The temperature of the object is changing at the
rate given by the differential equation

(a) Use a graphing utility and Euler’s Method to approximate
the particular solutions of this differential equation at

2, and 3. Use a step size of (A graphing
utility program for Euler’s Method is available at the
website college.hmco.com.)

(b) Compare your results with the exact solution

(c) Repeat parts (a) and (b) using a step size of 
Compare the results.

h ! 0.05.

y ! 72 & 68e#t#2.

h ! 0.1.t ! 1,

dy
dt

! #
1
2

! y # 72".

140)F.
t ! 0

h

y ! 1
2 !sin x # cos x & ex"!0, 0"dy

dx
! y & cos!x"

y ! )2x2 & 4!0, 2"dy
dx

!
2x
y

y ! 3ex!0, 3"dy
dx

! y

SolutionConditionEquation
ExactInitialDifferential

h ! 0.1h ! 0.2

h ! 0.1n ! 10,y!0" ! 5,y$ ! cos x & sin y,

h ! 0.1n ! 10,y!0" ! 1,y$ ! exy,

h ! 0.4n ! 5,y!0" ! 1,y$ ! 0.5x!3 # y",
h ! 0.05n ! 10,y!0" ! 3,y$ ! 3x # 2y,

h ! 0.05n ! 20,y!0" ! 2,y$ ! x & y,

h ! 0.1n ! 10,y!0" ! 2,y$ ! x & y,

h.
n

y!0" ! 2
dy
dx

!
1
2

e#x#8 sin 
'y
4

,

y!0" ! 1
dy
dx

! 0.4y!3 # x",

y!0" ! 9
dy
dx

! 0.2x!2 # y",

y!0" ! 2
dy
dx

! 0.02y!10 # y",

y!0" ! 6
dy
dx

! 4 # y,

y!0" ! 4
dy
dx

! 0.25y,

!1, 1"!0, 1"

x

y

6

31 2−3 −2 −1

x →(.y$ ! 1#y

y > 0,y$ ! 1#y,
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x 0 0.2 0.4 0.6 0.8 1

(exact)
y$x%

$h ! 0.2%
y$x%

$h ! 0.1%
y$x%

84. The graph shows a solution of one of the following differ-
ential equations. Determine the correct equation. Explain
your reasoning.

(a)

(b)

(c)

(d) y$ ! 4 # xy

y$ ! #4xy

y$ !
4x
y

x

yy$ ! xy

CAPSTONE

CAS



True or False? In Exercises 89–92, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

89. If is a solution of a first-order differential equation,
then is also a solution.

90. The general solution of a differential equation is
To find a particular solution, you

must be given two initial conditions.

91. Slope fields represent the general solutions of differential
equations.

92. A slope field shows that the slope at the point is 6. This
slope field represents the family of solutions for the differential
equation

93. Errors and Euler’s Method The exact solution of the differen-
tial equation

where is 

(a) Use a graphing utility to complete the table, where is the
exact value of the solution, is the approximate solution
using Euler’s Method with is the approximate
solution using Euler’s Method with is the
absolute error is the absolute error 
and is the ratio 

(b) What can you conclude about the ratio as changes?

(c) Predict the absolute error when 

94. Errors and Euler’s Method Repeat Exercise 93 for which the
exact solution of the differential equation

where is 

95. Electric Circuits The diagram shows a simple electric circuit
consisting of a power source, a resistor, and an inductor.

A model of the current in amperes at time is given by
the first-order differential equation

where is the voltage produced by the power source,
is the resistance, in ohms and is the inductance, in henrys

Suppose the electric circuit consists of a 24-V power
source, a 12- resistor, and a 4-H inductor.

(a) Sketch a slope field for the differential equation.

(b) What is the limiting value of the current? Explain.

96. Think About It It is known that is a solution of the
differential equation Find the values of 

97. Think About It It is known that is a solution of
the differential equation Find the values of *.y" & 16y ! 0.

y ! A sin *t

k.y" # 16y ! 0.
y ! ekt

+
!H".

L!+",
R!V"E!t"

L
dI
dt

& RI ! E!t"

t!A",I,

E

R

L

y ! x # 1 & 2e#x.y!0" ! 1,

dy
dx

! x # y

h ! 0.05.

hr

e1#e2.r
(y # y2(,e2(y # y1(,
e1h ! 0.2,

y2h ! 0.1,
y1

y

y ! 4e#2x.y!0" ! 4,

dy
dx

! #2y

y$ ! 4x & 2y.

!1, 1"

y ! #4.9x2 & C1x & C2.

y ! f !x" & C
y ! f !x"
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85. In your own words, describe the difference between a
general solution of a differential equation and a particular
solution.

86. Explain how to interpret a slope field.

87. Describe how to use Euler’s Method to approximate a 
particular solution of a differential equation.

88. It is known that is a solution of the differential
equation Is it possible to determine or from
the information given? If so, find its value.

kCy$ ! 0.07y.
y ! Cekx

WRITING ABOUT CONCEPTS

x 0 0.2 0.4 0.6 0.8 1

y

y1

y2

e1

e2

r

98. Let be a twice-differentiable real-valued function satisfying

where for all real Prove that is bounded.

99. Prove that if the family of integral curves of the differential
equation

is cut by the line the tangents at the points of inter-
section are concurrent.

These problems were composed by the Committee on the Putnam Prize
Competition. © The Mathematical Association of America. All rights reserved.

x ! k,

p!x" , q!x" % 0
dy
dx

& p!x"y ! q!x",

( f !x"(x.g!x" - 0

f !x" & f"!x" ! #xg!x" f$!x"

f

PUTNAM EXAM CHALLENGE
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6.2 Differential Equations: Growth and Decay
■ Use separation of variables to solve a simple differential equation.
■ Use exponential functions to model growth and decay in applied problems.

Differential Equations
In the preceding section, you learned to analyze visually the solutions of differential
equations using slope fields and to approximate solutions numerically using Euler’s
Method. Analytically, you have learned to solve only two types of differential
equations—those of the forms and In this section, you will learn
how to solve a more general type of differential equation. The strategy is to rewrite the
equation so that each variable occurs on only one side of the equation. This strategy
is called separation of variables. (You will study this strategy in detail in Section 6.3.)

EXAMPLE 1 Solving a Differential Equation

Original equation

Multiply both sides by 

Integrate with respect to 

Apply Power Rule.

Rewrite, letting 

So, the general solution is given by ■

Notice that when you integrate both sides of the equation in Example 1, you don’t
need to add a constant of integration to both sides. If you did, you would obtain the
same result.

Some people prefer to use Leibniz notation and differentials when applying 
separation of variables. The solution of Example 1 is shown below using this notation.

y2 # 2x2 ! C

1
2

y2 ! x2 & C1

*y dy ! *2x dx

y dy ! 2x dx

dy
dx

!
2x
y

1
2 y2 ! x2 & C1

1
2 y2 ! x2 & !C3 # C2"

1
2 y2 & C2 ! x2 & C3

*y dy ! *2x dx

y2 # 2x2 ! C.

C ! 2C1.y2 # 2x2 ! C

1
2

y2 ! x2 & C1

dy ! y$ dx*y dy ! *2x dx

x.*yy$ dx ! *2x dx

y.yy$ ! 2x

y$ !
2x
y

y" ! f!x".y$ ! f!x"

You can use implicit 
differentiation to check the solution in
Example 1.

STUDY TIP

E X P L O R A T I O N

In Example 1, the general solution
of the differential equation is

Use a graphing utility to sketch
the particular solutions for

and
Describe the solutions graphically.
Is the following statement true of
each solution?

The slope of the graph at the 
point is equal to twice
the ratio of and 

Explain your reasoning. Are all
curves for which this statement is
true represented by the general
solution?

y.x
!x, y"

C ! 0.C ! ±1,C ! ±2,

y 2 # 2x2 ! C.



Growth and Decay Models
In many applications, the rate of change of a variable is proportional to the value of

If is a function of time the proportion can be written as follows.

Rate of change of is proportional to 

The general solution of this differential equation is given in the following theorem.

EXAMPLE 2 Using an Exponential Growth Model

The rate of change of is proportional to When and when 
What is the value of when 

Solution Because you know that and are related by the equation
You can find the values of the constants and by applying the initial

conditions.

When

When

So, the model is When the value of is 
(see Figure 6.8). ■

2e0.3466!3" + 5.657yt ! 3,y + 2e0.3466t.

t ! 2, y ! 4.k !
1
2

 ln 2 + 0.34664 ! 2e2k

t ! 0, y ! 2.C ! 22 ! Ce0

kCy ! Cekt.
tyy$ ! ky,

t ! 3?yy ! 4.
t ! 2,y ! 2,t ! 0,y.y

dy
dt

! ky

y.y

t,yy.
y
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THEOREM 6.1 EXPONENTIAL GROWTH AND DECAY MODEL

If is a differentiable function of such that and for some
constant then

is the initial value of and is the proportionality constant. Exponential
growth occurs when and exponential decay occurs when k < 0.k > 0,

ky,C

y ! Cekt.

k,
y$ ! kyy > 0ty

PROOF

Write original equation.

Separate variables.

Integrate with respect to 

Find antiderivative of each side.

Solve for 

Let

So, all solutions of are of the form Remember that you can
differentiate the function with respect to to verify that ■y$ ! ky.ty ! Cekt

y ! Cekt.y$ ! ky

C ! eC1.y ! Cekt

y.y ! ekteC1

 ln y ! kt & C1

dy ! y$ dt*1
y

dy ! *k dt

t.*y$
y

dt ! *k dt

y$
y

! k

y$ ! ky

t
1

1

2

2

3

3

4

4

5

6

7

(0, 2)

(2, 4)

(3, 5.657)

y = 2e0.3466t

y

If the rate of change of is proportional to
then follows an exponential model.

Figure 6.8
yy,

y

Using logarithmic proper-
ties, note that the value of in Example 2
can also be written as So, the
model becomes which can
then be rewritten as y ! 2!)2"t

.
y ! 2e!ln)2"t,

ln!)2".
k

STUDY TIP



Radioactive decay is measured in terms of half-life—the number of years
required for half of the atoms in a sample of radioactive material to decay. The rate 
of decay is proportional to the amount present. The half-lives of some common
radioactive isotopes are shown below.

Uranium 4,470,000,000 years

Plutonium 24,100 years

Carbon 5715 years

Radium 1599 years

Einsteinium 276 days

Nobelium 25 seconds

EXAMPLE 3 Radioactive Decay

Suppose that 10 grams of the plutonium isotope was released in the Chernobyl
nuclear accident. How long will it take for the 10 grams to decay to 1 gram?

Solution Let represent the mass (in grams) of the plutonium. Because the rate of
decay is proportional to you know that

where is the time in years. To find the values of the constants and apply the 
initial conditions. Using the fact that when you can write 

which implies that Next, using the fact that the half-life of is 24,100
years, you have when so you can write

So, the model is 

Half-life model

To find the time it would take for 10 grams to decay to 1 gram, you can solve for in
the equation

The solution is approximately 80,059 years. ■

From Example 3, notice that in an exponential growth or decay problem, it is easy
to solve for when you are given the value of at The next example
demonstrates a procedure for solving for and when you do not know the value of

at t ! 0.y
kC

t ! 0.yC

1 ! 10e#0.000028761t.

t

y ! 10e#0.000028761t.

#0.000028761 + k.

1
24,100

 ln 
1
2

! k

1
2

! e24,100k

 5 ! 10ek!24,100"

t ! 24,100,y ! 10#2 ! 5

239PuC ! 10.

10 ! Cek!0" ! Ce0

t ! 0,y ! 10
k,Ct

y ! Cekt

y,
y

239Pu

!257No"
!254Es"

!226Ra"
!14C"

!239Pu"
!238U"
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Most graphing utilities have curve-fitting capabilities that can be
used to find models that represent data. Use the exponential regression feature of a
graphing utility and the information in Example 2 to find a model for the data. How
does your model compare with the given model?
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NOTE The exponential decay model
in Example 3 could also be written
as This model is much
easier to derive, but for some applications
it is not as convenient to use.

y ! 10!1
2"t#24,100.



EXAMPLE 4 Population Growth

Suppose an experimental population of fruit flies increases according to the law of
exponential growth. There were 100 flies after the second day of the experiment and
300 flies after the fourth day. Approximately how many flies were in the original 
population?

Solution Let be the number of flies at time where is measured in days.
Note that is continuous whereas the number of flies is discrete. Because 
when and when you can write

and

From the first equation, you know that Substituting this value into the
second equation produces the following.

So, the exponential growth model is

To solve for reapply the condition when and obtain

So, the original population (when ) consisted of approximately 
flies, as shown in Figure 6.9.

EXAMPLE 5 Declining Sales

Four months after it stops advertising, a manufacturing company notices that its sales
have dropped from 100,000 units per month to 80,000 units per month. If the sales 
follow an exponential pattern of decline, what will they be after another 2 months?

Solution Use the exponential decay model where is measured in months.
From the initial condition you know that Moreover, because

when you have

So, after 2 more months you can expect the monthly sales rate to be

See Figure 6.10. ■

+ 71,500 units.

y + 100,000e#0.0558!6"

!t ! 6",

#0.0558 + k.

 ln!0.8" ! 4k

 0.8 ! e4k

 80,000 ! 100,000e4k

t ! 4,y ! 80,000
C ! 100,000.!t ! 0",

ty ! Cekt,

y ! C ! 33t ! 0

C ! 100e#1.0986 + 33.

 100 ! Ce0.5493!2"

t ! 2y ! 100C,

y ! Ce0.5493t.

 0.5493 + k

1
2

 ln 3 ! k

 ln 3 ! 2k

 300 ! 100e2k

 300 ! 100e#2ke4k

C ! 100e#2k.

300 ! Ce4k.100 ! Ce2k

t ! 4,y ! 300t ! 2
y ! 100y

tt,y ! Cekt
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In Examples 2 through 5, you did not actually have to solve the differential
equation

(This was done once in the proof of Theorem 6.1.) The next example demonstrates a
problem whose solution involves the separation of variables technique. The example
concerns Newton’s Law of Cooling, which states that the rate of change in the
temperature of an object is proportional to the difference between the object’s 
temperature and the temperature of the surrounding medium.

EXAMPLE 6 Newton’s Law of Cooling

Let represent the temperature of an object in a room whose temperature is
kept at a constant If the object cools from to in 10 minutes, how much
longer will it take for its temperature to decrease to 

Solution From Newton’s Law of Cooling, you know that the rate of change in is
proportional to the difference between and 60. This can be written as 

To solve this differential equation, use separation of variables, as follows.

Differential equation

Separate variables.

Integrate each side.

Find antiderivative of each side.

Because and you can omit the absolute value signs.
Using exponential notation, you have

Using when you obtain which implies
that Because when 

So, the model is

Cooling model

and finally, when you obtain

So, it will require about 14.09 minutes for the object to cool to a temperature of
(see Figure 6.11). ■80)

more

t + 24.09 minutes.

 ln 12 ! #0.02877t

1
2 ! e#0.02877t

 20 ! 40e#0.02877t

 80 ! 60 & 40e#0.02877t

y ! 80,

y ! 60 & 40e#0.02877t

k ! 1
10 ln 34 + #0.02877.

 30 ! 40e10k

 90 ! 60 & 40ek!10"

t ! 10,y ! 90C ! 40.
100 ! 60 & Cek!0" ! 60 & C,t ! 0,y ! 100

C ! eC1y ! 60 & Cekt.y # 60 ! ekt&C1

(y # 60( ! y # 60,y > 60,

 ln(y # 60( ! kt & C1

* 1
y # 60

dy ! *k dt

& 1
y # 60' dy ! k dt

dy
dt

! k!y # 60"

80 . y . 100.y$ ! k! y # 60",

y
y

80)?
90)100)60).

!in )F"y

y$ ! ky.
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In Exercises 1–10, solve the differential equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Exercises 11–14, write and solve the differential equation
that models the verbal statement.

11. The rate of change of with respect to is inversely propor-
tional to the square of 

12. The rate of change of with respect to is proportional to

13. The rate of change of with respect to is proportional to

14. The rate of change of with respect to varies jointly as and

Slope Fields In Exercises 15 and 16, a differential equation, a
point, and a slope field are given. (a) Sketch two approximate
solutions of the differential equation on the slope field, one of
which passes through the given point. (b) Use integration to find
the particular solution of the differential equation and use a
graphing utility to graph the solution. Compare the result with
the sketch in part (a). To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

15. 16.

In Exercises 17–20, find the function passing through
the point with the given first derivative. Use a graphing
utility to graph the solution.

17. 18.

19. 20.

In Exercises 21–24, write and solve the differential equation
that models the verbal statement. Evaluate the solution at the
specified value of the independent variable.

21. The rate of change of is proportional to When 
and when What is the value of when 

22. The rate of change of is proportional to When 
and when What is the value of 

when

23. The rate of change of is proportional to When 
and when What is the value of

when

24. The rate of change of is proportional to When 
and when What is the value of 

when

In Exercises 25–28, find the exponential function that
passes through the two given points.

25. 26.

27. 28.

1 2 3 4 5

5

4

3

2

1

(4, 5)

y

t

3, 1
2))

(1, 5)

(5, 2)

y

t
1 2 3 4 5 6

1
2
3
4
5
6

1 2 3 4 5

4

3

2

1

(0, 4)

y

5, 1
2))

tt
1 2 3 4 5

5

4

3

2

1
0, 1

2))

(5, 5)

y

y ! Cekt

t ! 5?
PP ! 4750.t ! 1,P ! 5000,

t ! 0,P.P

t ! 6?V
V ! 12,500.t ! 4,V ! 20,000,

t ! 0,V.V

t ! 4?
NN ! 400.t ! 1,N ! 250,

t ! 0,N.N

x ! 8?yy ! 15.x ! 4,
y ! 6,x ! 0,y.y

dy
dt

!
3
4

y
dy
dt

! #
1
2

y

dy
dt

! #
3
4
)t

dy
dt

!
1
2

t

$0, 10%
y ! f $t%

x

4

−4

−4 4

y

x
−5 −1

9

5

y

!0, 1
2"dy

dx
! xy,!0, 0"dy

dx
! x!6 # y",

L # y.
xxy

500 # s.
sN

25 # t.
tP

t.
tQ

xy & y$ ! 100x!1 & x2"y$ # 2xy ! 0

y$ ! x!1 & y"y$ ! )x y

y$ !
)x
7y

y$ !
5x
y

dy
dx

! 6 # y
dy
dx

! y & 3

dy
dx

! 6 # x
dy
dx

! x & 3
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6.2 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.

29. Describe what the values of and represent in the 
exponential growth and decay model,

30. Give the differential equation that models exponential
growth and decay.

In Exercises 31 and 32, determine the quadrants in which
the solution of the differential equation is an increasing
function. Explain. (Do not solve the differential equation.)

31. 32.
dy
dx

!
1
2

x2y
dy
dx

!
1
2

xy

y ! Cekt.
kC

WRITING ABOUT CONCEPTS



Radioactive Decay In Exercises 33–40, complete the table for
the radioactive isotope.

Half-Life

33. 1599 20 g

34. 1599 1.5 g

35. 1599 0.1 g

36. 5715 3 g

37. 5715 5 g

38. 5715 1.6 g

39. 24,100 2.1 g

40. 24,100 0.4 g

41. Radioactive Decay Radioactive radium has a half-life of
approximately 1599 years. What percent of a given amount
remains after 100 years?

42. Carbon Dating Carbon-14 dating assumes that the carbon
dioxide on Earth today has the same radioactive content as it
did centuries ago. If this is true, the amount of absorbed by
a tree that grew several centuries ago should be the same as the
amount of absorbed by a tree growing today. A piece of
ancient charcoal contains only 15% as much of the radioactive
carbon as a piece of modern charcoal. How long ago was the
tree burned to make the ancient charcoal? (The half-life of 
is 5715 years.)

Compound Interest In Exercises 43–48, complete the table for
a savings account in which interest is compounded continuously.

43. $4000 6%

44. $18,000

45. $750

46. $12,500 5 yr

47. $500 $1292.85

48. $2000 $5436.56

Compound Interest In Exercises 49–52, find the principal 
that must be invested at rate compounded monthly, so that
$1,000,000 will be available for retirement in years.

49. 50.

51. 52.

Compound Interest In Exercises 53 –56, find the time neces-
sary for $1000 to double if it is invested at a rate of compounded
(a) annually, (b) monthly, (c) daily, and (d) continuously.

53. 54.

55. 56.

Population In Exercises 57– 61, the population (in millions) of
a country in 2007 and the expected continuous annual rate of
change of the population are given. (Source: U.S. Census
Bureau, International Data Base)

(a) Find the exponential growth model for the popula-
tion by letting correspond to 2000.

(b) Use the model to predict the population of the country in
2015.

(c) Discuss the relationship between the sign of and the
change in population for the country.

57. Latvia 2.3

58. Egypt 80.3 0.017

59. Paraguay 6.7 0.024

60. Hungary 10.0

61. Uganda 30.3 0.036

63. Modeling Data One hundred bacteria are started in a culture
and the number of bacteria is counted each hour for 5 hours.
The results are shown in the table, where is the time in hours.

(a) Use the regression capabilities of a graphing utility to find
an exponential model for the data.

(b) Use the model to estimate the time required for the popula-
tion to quadruple in size.

64. Bacteria Growth The number of bacteria in a culture is
increasing according to the law of exponential growth. There
are 125 bacteria in the culture after 2 hours and 350 bacteria
after 4 hours.

(a) Find the initial population.

(b) Write an exponential growth model for the bacteria popula-
tion. Let represent time in hours.

(c) Use the model to determine the number of bacteria after
8 hours.

(d) After how many hours will the bacteria count be 25,000?

65. Learning Curve The management at a certain factory has
found that a worker can produce at most 30 units in a day. The
learning curve for the number of units produced per day after
a new employee has worked days is After 20
days on the job, a particular worker produces 19 units.

N ! 30!1 # ekt".t
N

t

t
N

#0.003

#0.006

k2007 PopulationCountry

k

t ! 0
P ! Cekt

k

r ! 5.5%r ! 8.5%

r ! 6%r ! 7%

r

t ! 25r ! 9%,t ! 35r ! 8%,

t ! 40r ! 6%,t ! 20r ! 71
2%,

t
r,

P

7 3
4 yr

5 1
2%

10 Years       DoubleRate    Investment
Amount AfterTime toAnnualInitial

14C

14C

14C

239Pu

239Pu

14C

14C

14C

226Ra

226Ra

226Ra

10,000 Years1000 YearsQuantity!in years"Isotope
AfterAfterInitial
AmountAmount
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t 0 1 2 3 4 5

N 100 126 151 198 243 297

62. (a) Suppose an insect population increases by a constant
number each month. Explain why the number of insects
can be represented by a linear function.

(b) Suppose an insect population increases by a constant
percentage each month. Explain why the number of
insects can be represented by an exponential function.

CAPSTONE



(a) Find the learning curve for this worker.

(b) How many days should pass before this worker is producing
25 units per day?

66. Learning Curve If the management in Exercise 65 requires a
new employee to produce at least 20 units per day after 30 days
on the job, find (a) the learning curve that describes this
minimum requirement and (b) the number of days before a
minimal achiever is producing 25 units per day.

67. Modeling Data The table shows the populations (in
millions) of the United States from 1960 to 2000. (Source:
U.S. Census Bureau)

(a) Use the 1960 and 1970 data to find an exponential model
for the data. Let represent 1960.

(b) Use a graphing utility to find an exponential model for
all the data. Let represent 1960.

(c) Use a graphing utility to plot the data and graph models 
and in the same viewing window. Compare the actual
data with the predictions. Which model better fits the data?

(d) Estimate when the population will be 320 million.

68. Modeling Data The table shows the net receipts and the
amounts required to service the national debt (interest on
Treasury debt securities) of the United States from 2001
through 2010. The years 2007 through 2010 are estimated, and
the monetary amounts are given in billions of dollars.
(Source: U.S. Office of Management and Budget)

(a) Use the regression capabilities of a graphing utility to find
an exponential model for the receipts and a quartic model

for the amount required to service the debt. Let represent
the time in years, with corresponding to 2001.

(b) Use a graphing utility to plot the points corresponding to the
receipts, and graph the exponential model. Based on the
model, what is the continuous rate of growth of the receipts?

(c) Use a graphing utility to plot the points corresponding to
the amounts required to service the debt, and graph the
quartic model.

(d) Find a function that approximates the percent of the
receipts that is required to service the national debt. Use a
graphing utility to graph this function.

69. Sound Intensity The level of sound (in decibels) with an
intensity of is where is an intensity
of watt per square centimeter, corresponding roughly to
the faintest sound that can be heard. Determine for the 
following.
(a) watt per square centimeter (whisper)

(b) watt per square centimeter (busy street corner)

(c) watt per square centimeter (air hammer)

(d) watt per square centimeter (threshold of pain)

70. Noise Level With the installation of noise suppression
materials, the noise level in an auditorium was reduced from
93 to 80 decibels. Use the function in Exercise 69 to find the
percent decrease in the intensity level of the noise as a result of
the installation of these materials.

71. Forestry The value of a tract of timber is 
where is the time in years, with corresponding to 2008.
If money earns interest continuously at 10%, the present value
of the timber at any time is Find the year in
which the timber should be harvested to maximize the present
value function.

72. Earthquake Intensity On the Richter scale, the magnitude 
of an earthquake of intensity is

where is the minimum intensity used for comparison.
Assume that 

(a) Find the intensity of the 1906 San Francisco earthquake

(b) Find the factor by which the intensity is increased if the
Richter scale measurement is doubled.

(c) Find 

73. Newton’s Law of Cooling When an object is removed from
a furnace and placed in an environment with a constant
temperature of its core temperature is One hour
after it is removed, the core temperature is Find the
core temperature 5 hours after the object is removed from the
furnace.

74. Newton’s Law of Cooling A container of hot liquid is placed
in a freezer that is kept at a constant temperature of The
initial temperature of the liquid is After 5 minutes, the
liquid’s temperature is How much longer will it take for
its temperature to decrease to 

True or False? In Exercises 75–78, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

75. In exponential growth, the rate of growth is constant.

76. In linear growth, the rate of growth is constant.

77. If prices are rising at a rate of 0.5% per month, then they are
rising at a rate of 6% per year.

78. The differential equation modeling exponential growth is
where is a constant.kdy#dx ! ky,

30)F?
60)F.

160)F.
20)F.

1120)F.
1500)F.80)F,

dR#dI.

!R ! 8.3".

I0 ! 1.
I0

R !
ln I # ln I0

ln 10

I
R

A!t" ! V!t"e#0.10t.t

t ! 0t
V!t" ! 100,000e0.8)t,

I ! 10#4

I ! 10#6.5

I ! 10#9

I ! 10#14

/!I"
10#16

I0/!I" ! 10 log10 !I#I0",I
/

P!t"

t ! 1
tI

R

P2

P1

t ! 0
P2

t ! 0P1

P
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Year 1960 1970 1980 1990 2000

Population, P 181 205 228 250 282

Year 2001 2002 2003 2004 2005

Receipts 1991.4 1853.4 1782.5 1880.3 2153.9

Interest 359.5 332.5 318.1 321.7 352.3

Year 2006 2007 2008 2009 2010

Receipts 2407.3 2540.1 2662.5 2798.3 2954.7

Interest 405.9 433.0 469.9 498.0 523.2
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6.3 Separation of Variables and the Logistic Equation
■ Recognize and solve differential equations that can be solved by separation of

variables.
■ Recognize and solve homogeneous differential equations.
■ Use differential equations to model and solve applied problems.
■ Solve and analyze logistic differential equations.

Separation of Variables
Consider a differential equation that can be written in the form

where is a continuous function of alone and is a continuous function of alone.
As you saw in the preceding section, for this type of equation, all terms can
be collected with and all terms with and a solution can be obtained by
integration. Such equations are said to be separable, and the solution procedure is
called separation of variables. Below are some examples of differential equations
that are separable.

EXAMPLE 1 Separation of Variables

Find the general solution of 

Solution To begin, note that is a solution. To find other solutions, assume that
and separate variables as shown.

Differential form

Separate variables.

Now, integrate to obtain

Integrate.

Because is also a solution, you can write the general solution as 

General solution ■!C ! ± eC1"y ! C)x2 & 4.

y ! 0

y ! ±eC1)x2 & 4.
(y( ! eC1)x2 & 4

 ln(y( ! ln)x2 & 4 & C1

 ln(y( !
1
2

 ln!x2 & 4" & C1

*dy
y

! * x
x2 & 4

dx

dy
y

!
x

x2 & 4
dx

!x2 & 4" dy ! xy dx

y % 0
y ! 0

!x2 & 4" dy
dx

! xy.

1
ey & 1

dy !
2
x

dx
xy$

ey & 1
! 2

dy ! cot x dx!sin x"y$ ! cos x

3y dy ! #x2 dxx2 & 3y
dy
dx

! 0

Rewritten with Variables SeparatedOriginal Differential Equation

dy,ydx
x

yNxM

M!x" & N!y" dy
dx

! 0

NOTE Be sure to check your solutions
throughout this chapter. In Example 1, you
can check the solution by
differentiating and substituting into the
original equation.

So, the solution checks.

Cx)x2 & 4 ! Cx)x2 & 4

!x2 & 4" Cx
)x2 & 4

!
?

x!C)x2 & 4 "

!x2 & 4" dy
dx

! xy

y ! C)x2 & 4



In some cases it is not feasible to write the general solution in the explicit form
The next example illustrates such a solution. Implicit differentiation can be

used to verify this solution.

EXAMPLE 2 Finding a Particular Solution

Given the initial condition find the particular solution of the equation

Solution Note that is a solution of the differential equation—but this solution
does not satisfy the initial condition. So, you can assume that To separate
variables, you must rid the first term of and the second term of So, you should
multiply by and obtain the following.

From the initial condition you have which implies that
So, the particular solution has the implicit form

You can check this by differentiating and rewriting to get the original equation.

EXAMPLE 3 Finding a Particular Solution Curve

Find the equation of the curve that passes through the point and has a slope of
at any point 

Solution Because the slope of the curve is given by you have

with the initial condition Separating variables and integrating produces

Because when it follows that and So, the equation of
the specified curve is

Because the solution is not defined at and the initial condition is given at 
is restricted to positive values. See Figure 6.12. ■x

x ! 1,x ! 0

x > 0.y ! !3e"e#1#x ! 3e!x#1"#x,

C ! 3e.3 ! Ce#1x ! 1,y ! 3

y ! e#!1#x"&C1 ! Ce#1#x.

 ln(y( ! #
1
x

& C1

y % 0*dy
y

! *dx
x2 ,

y!1" ! 3.

dy
dx

!
y
x2

y#x2,

!x, y".y#x2
!1, 3"

y2 # ln y2 & ex2
! 2.

y2

2
# ln (y( ! #

1
2

ex2
& 1

C ! 1.

1
2 # 0 ! #1

2 & C,y!0" ! 1,

y2

2
# ln (y( ! #

1
2

ex2
& C

*&y #
1
y' dy ! *#xex2 dx

e#x2! y2 # 1" dy ! #xy dx

xy dx & e#x2!y2 # 1" dy ! 0

ex2#y
e#x2.y
y % 0.

y ! 0

xy dx & e#x2!y2 # 1" dy ! 0.

y!0" ! 1,

y ! f!x".
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6

4

2

x

y = 3e(x − 1)/x

y = 3e

(1, 3)

y

Figure 6.12

■ FOR FURTHER INFORMATION
For an example (from engineering) of 
a differential equation that is separable,
see the article “Designing a Rose Cutter”
by J. S. Hartzler in The College
Mathematics Journal. To view this article,
go to the website www.matharticles.com.



Homogeneous Differential Equations
Some differential equations that are not separable in and can be made separable by
a change of variables. This is true for differential equations of the form 
where is a homogeneous function. The function given by is homogeneous of
degree if

where is an integer.

EXAMPLE 4 Verifying Homogeneous Functions

a. is a homogeneous function of degree 3 because

b. is a homogeneous function of degree 1 because 

c. is not a homogeneous function because

d. is a homogeneous function of degree 0 because

■

EXAMPLE 5 Testing for Homogeneous Differential Equations

a. is homogeneous of degree 2.

b. is homogeneous of degree 3.

c. is a homogeneous differential equation. ■not!x2 & 1" dx & y2 dy ! 0

x3 dx ! y3 dy

!x2 & xy" dx & y2 dy ! 0

f!tx, ty" !
tx
ty

! t0 x
y
.

f!x, y" ! x#y

f!tx, ty" ! tx & t2y2 ! t!x & ty2" % tn!x & y2".

f !x, y" ! x & y2

! t f!x, y".

! t&xex#y & y sin 
y
x'

f!tx, ty" ! txetx#ty & ty sin 
ty
tx

f!x, y" ! xex#y & y sin!y#x"

! t3f!x, y".
! t3!x2y # 4x3 & 3xy2"
! t3!x2y" # t3!4x3" & t3!3xy2"

f!tx, ty" ! !tx"2!ty" # 4!tx"3 & 3!tx"!ty"2

f!x, y" ! x2y # 4x3 & 3xy2

n

n
f!x, y"f

y$ ! f!x, y",
yx
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Homogeneous function of degree nf !tx, ty" ! tnf !x, y"

DEFINITION OF HOMOGENEOUS DIFFERENTIAL EQUATION

A homogeneous differential equation is an equation of the form

where and are homogeneous functions of the same degree.NM

M!x, y" dx & N!x, y"dy ! 0

NOTE The notation is used to
denote a function of two variables in
much the same way as denotes a
function of one variable. You will study
functions of two variables in detail in
Chapter 13.

f !x"

f !x, y"



To solve a homogeneous differential equation by the method of separation of
variables, use the following change of variables theorem.

EXAMPLE 6 Solving a Homogeneous Differential Equation

Find the general solution of

Solution Because and are both homogeneous of degree 2, let 
to obtain Then, by substitution, you have

Dividing by and separating variables produces

Substituting for produces the following general solution.

General solution

You can check this by differentiating and rewriting to get the original equation.
■

!x2 & 2y2"3 ! Cx2

&1 &
2y2

x2 '3

x4 ! C

x4 ! C,1 & 2&y
x'

2

-
#3

v

x4 ! C!1 & 2v2"#3.

 ln x4 ! ln(C!1 & 2v2"#3(
4 ln(x( ! #3 ln!1 & 2v2" & ln(C(

 ln(x( ! #
3
4

 ln!1 & 2v2" & C1

*dx
x

! * #3v
1 & 2v2 dv

!1 & 2v2" dx ! #3vx dv

x2

x2!1 & 2v2" dx & x2!3vx" dv ! 0.

!x2 & 2v2x2" dx & 3x3v dv ! 0

!x2 # v2x2" dx & 3x!vx"!x dv & v dx" ! 0

dy

dy ! x dv & v dx.
y ! vx3xy!x2 # y2"

!x2 # y2" dx & 3xy dy ! 0.
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THEOREM 6.2 CHANGE OF VARIABLES FOR HOMOGENEOUS EQUATIONS

If is homogeneous, then it can be transformed
into a differential equation whose variables are separable by the substitution

where is a differentiable function of x.v

y ! vx

M!x, y" dx & N!x, y" dy ! 0

The substitution 
will yield a differential equation that is
separable with respect to the variables 

and You must write your final 
solution, however, in terms of and y.x

v.x

y ! vxSTUDY TIP

If you have access to a graphing utility, try using it to graph several
solutions of the equation in Example 6. For instance, Figure 6.13 shows the graphs of

for 2, 3, and 4.C ! 1,

!x2 & 2y2"3 ! Cx2

TECHNOLOGY

x

(x2 + 2y2)3 = Cx2

C = 1 C = 2

C = 3
C = 4

1

1

−1

y

General solution of

Figure 6.13
!x2 # y2" dx & 3xy dy ! 0



Applications

EXAMPLE 7 Wildlife Population

The rate of change of the number of coyotes in a population is directly propor-
tional to where is the time in years. When the population is 300,
and when the population has increased to 500. Find the population when 

Solution Because the rate of change of the population is proportional to 
you can write the following differential equation.

You can solve this equation using separation of variables.

Differential form

Separate variables.

Integrate.

Assume

General solution

Using when you can conclude that which produces

Then, using when it follows that 

So, the model for the coyote population is 

Model for population

When you can approximate the population to be

coyotes.

The model for the population is shown in Figure 6.14. Note that is the 
horizontal asymptote of the graph and is the carrying capacity of the model. You will
learn more about carrying capacity later in this section.

Figure 6.14 ■

t
1 2 3 4 5 6

Time (in years)

700

100

200

300

400

500

600

N
um

be
r o

f c
oy

ot
es

(0, 300)

(2, 500)

N = 650 − 350e−0.4236t

N

(3, 552)

N ! 650

N ! 650 # 350e#0.4236!3" + 552

t ! 3,

N ! 650 # 350e#0.4236t.

k + 0.4236.e#2k ! 3
7500 ! 650 # 350e#2k

t ! 2,N ! 500

N ! 650 # 350e#kt.

C ! 350,t ! 0,N ! 300

N ! 650 # Ce#kt

N < 650. 650 # N ! e#kt#C1

 ln(650 # N( ! #kt # C1

#ln(650 # N( ! kt & C1

dN
650 # N

! k dt

dN ! k!650 # N" dt

dN
dt

! k!650 # N"

650 # N!t",

t ! 3.t ! 2,
t ! 0,t650 # N!t",

N!t"

6.3 Separation of Variables and the Logistic Equation 427
©

fr
an

zf
ot

o.
co

m
/A

la
m

y



A common problem in electrostatics, thermodynamics, and hydrodynamics
involves finding a family of curves, each of which is orthogonal to all members of a
given family of curves. For example, Figure 6.15 shows a family of circles

Family of circles

each of which intersects the lines in the family

Family of lines

at right angles. Two such families of curves are said to be mutually orthogonal, and
each curve in one of the families is called an orthogonal trajectory of the other
family. In electrostatics, lines of force are orthogonal to the equipotential curves.
In thermodynamics, the flow of heat across a plane surface is orthogonal to the
isothermal curves. In hydrodynamics, the flow (stream) lines are orthogonal
trajectories of the velocity potential curves.

EXAMPLE 8 Finding Orthogonal Trajectories

Describe the orthogonal trajectories for the family of curves given by

for Sketch several members of each family.

Solution First, solve the given equation for and write Then, by differen-
tiating implicitly with respect to you obtain the differential equation

Differential equation

Slope of given family

Because represents the slope of the given family of curves at it follows that
the orthogonal family has the negative reciprocal slope So,

Slope of orthogonal family

Now you can find the orthogonal family by separating variables and integrating.

The centers are at the origin, and the transverse axes are vertical for and
horizontal for If the orthogonal trajectories are the lines If

the orthogonal trajectories are hyperbolas. Several trajectories are shown in
Figure 6.16. ■

K % 0,
y ! ± x.K ! 0,K < 0.
K > 0

y2 # x2 ! K

y2

2
!

x2

2
& C1

*y dy ! *x dx

dy
dx

!
x
y

.

x#y.
!x, y",y$

dy
dx

! #
y
x

.

x
dy
dx

! #y

xy$ & y ! 0

x,
xy ! C.C

C % 0.

y !
C
x

y ! Kx

x2 & y2 ! C
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y

x

Given family:
xy = C

Orthogonal
family:
y2 − x2 = K

Orthogonal trajectories
Figure 6.16

x

y

Each line is an orthogonal trajectory
of the family of circles.
Figure 6.15

y ! Kx



Logistic Differential Equation
In Section 6.2, the exponential growth model was derived from the fact that the rate
of change of a variable is proportional to the value of You observed that the
differential equation has the general solution Exponential
growth is unlimited, but when describing a population, there often exists some upper
limit past which growth cannot occur. This upper limit is called the carrying
capacity, which is the maximum population that can be sustained or supported as
time increases. A model that is often used to describe this type of growth is the logistic
differential equation

Logistic differential equation

where and are positive constants. A population that satisfies this equation does not
grow without bound, but approaches the carrying capacity as increases.

From the equation, you can see that if is between 0 and the carrying capacity 
then and the population increases. If is greater than then 
and the population decreases. The graph of the function is called the logistic curve,
as shown in Figure 6.17.

EXAMPLE 9 Deriving the General Solution

Solve the logistic differential equation 

Solution Begin by separating variables.

Write differential equation.

Separate variables.

Integrate each side.

Rewrite left side using partial fractions.

Find antiderivative of each side.

Multiply each side by and simplify.

Exponentiate each side.

Let

Solving this equation for produces ■

From Example 9, you can conclude that all solutions of the logistic differential
equation are of the general form

y !
L

1 & be#kt .

y !
L

1 & be#kt .y

±e#C ! b.
L # y

y
! be#kt

(L # y
y ( ! e#kt#C ! e#Ce#kt

#1 ln(L # y
y ( ! #kt # C

 ln(y( # ln(L # y( ! kt & C

*&1
y

&
1

L # y'dy ! * kdt

* 1
y!1 # y#L"dy ! * kdt

1
y!1 # y#L"dy ! kdt

dy
dt

! ky&1 #
y
L'

dy
dt

! ky&1 #
y
L'.

y
dy#dt < 0,L,ydy#dt > 0,

L,y
tL

Lk

dy
dt

! ky&1 #
y
L'

t
y!t"

LL

y ! Cekt.dy#dt ! ky
y.y
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t

y

L

Logistic
curve

y = L

Note that as 
Figure 6.17

y → L.t →(,

E X P L O R A T I O N

Use a graphing utility to investigate
the effects of the values of 
and on the graph of

Include some examples to support
your results.

y !
L

1 & be#kt .

k
b,L,



EXAMPLE 10 Solving a Logistic Differential Equation

A state game commission releases 40 elk into a game refuge. After 5 years, the elk
population is 104. The commission believes that the environment can support no more
than 4000 elk. The growth rate of the elk population is

where is the number of years.

a. Write a model for the elk population in terms of 

b. Graph the slope field for the differential equation and the solution that passes
through the point 

c. Use the model to estimate the elk population after 15 years.

d. Find the limit of the model as 

Solution

a. You know that So, the solution of the equation is of the form

Because you can solve for as follows.

Then, because when you can solve for 

So, a model for the elk population is given by 

b. Using a graphing utility, you can graph the slope field for

and the solution that passes through as shown in Figure 6.18.

c. To estimate the elk population after 15 years, substitute 15 for in the model.

Substitute 15 for 

Simplify.

d. As increases without bound, the denominator of gets closer and

closer to 1.

So, ■lim
t→(

4000
1 & 99e#0.194t ! 4000.

4000
1 & 99e#0.194tt

!
4000

1 & 99e#2.91 + 626

t.p !
4000

1 & 99e#0.194!15"

t

!0, 40",

dp
dt

! 0.194p&1 #
p

4000'

p !
4000

1 & 99e#0.194t .

k + 0.194104 !
4000

1 & 99e#k!5"

k.t ! 5,p ! 104

b ! 9940 !
4000
1 & b

40 !
4000

1 & be#k!0"

bp!0" ! 40,

p !
4000

1 & be#kt .

L ! 4000.

t →(.

!0, 40".

t.

t

40 . p . 4000
dp
dt

! kp&1 #
p

4000',

p
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0 80
0

5000

Slope field for

and the solution passing through 
Figure 6.18

!0, 40"

dp
dt

! 0.194p&1 #
p

4000'

E X P L O R A T I O N

Explain what happens if p!0" ! L.



In Exercises 1–14, find the general solution of the differential
equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15–24, find the particular solution that satisfies the
initial condition.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

In Exercises 25–28, find an equation of the graph that passes
through the point and has the given slope.

25. 26.

27. 28.

In Exercises 29 and 30, find all functions having the indicated
property.

29. The tangent to the graph of at the point intersects the 
axis at 

30. All tangents to the graph of pass through the origin.

In Exercises 31–38, determine whether the function is homoge-
neous, and if it is, determine its degree.

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39– 44, solve the homogeneous differential equation.

39. 40.

41. 42.

43. 44.

In Exercises 45–48, find the particular solution that satisfies the
initial condition.

45.

46.

47.

48.

Slope Fields In Exercises 49–52, sketch a few solutions of the
differential equation on the slope field and then find the general
solution analytically. To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

49. 50.

51. 52.

x
−4 −2−3 −1 2 31 4

y

8

x
3 41 2−3 −1−2

y

8

dy
dx

! 0.25x!4 # y"dy
dx

! 4 # y

x
4

−4

4

y

−42
x

−2

y

2

−2

dy
dx

! #
x
y

dy
dx

! x

y!1" ! 0!2x2 & y2" dx & xy dy ! 0

y!1" ! 0&x sec 
y
x

& y' dx # x dy ! 0

y!1" ! 1#y2 dx & x!x & y" dy ! 0

y!1" ! 0x dy # !2xe#y#x & y" dx ! 0

Initial ConditionDifferential Equation

y$ !
2x & 3y

x
y$ !

xy
x2 # y2

y$ !
x2 & y2

2xy
y$ !

x # y
x & y

y$ !
x3 & y3

xy2y$ !
x & y

2x

f !x, y" ! tan
y
x

f !x, y" ! 2 ln 
x
y

f !x, y" ! tan!x & y"f !x, y" ! 2 ln xy

f !x, y" !
xy

)x2 & y2
f !x, y" !

x2y2

)x2 & y2

f !x, y" ! x3 & 3x2y2 # 2y2f !x, y" ! x3 # 4xy2 & y3

f

!x & 2, 0".x-
!x, y"f

f

y$ !
2y
3x

!8, 2",y$ !
y

2x
!9, 1",

y$ ! #
9x

16y
!1, 1",y$ !

x
4y

!0, 2",

T!0" ! 140dT & k!T # 70" dt ! 0

P!0" ! P0dP # kP dt ! 0

r!0" ! 0
dr
ds

! er#2s

u!0" ! 1
du
dv

! uv sin v2

y!0" ! 1y)1 # x2 y$ # x)1 # y2 ! 0

y!0" ! )3y!1 & x2"y$ # x!1 & y2" ! 0

y!1" ! 22xy$ # ln x2 ! 0

y!#2" ! 1y!x & 1" & y$ ! 0

y!1" ! 9)x & )y y$ ! 0

y!0" ! 3yy$ # 2ex ! 0

Initial ConditionDifferential Equation                

12yy$ # 7ex ! 0y ln x # xy$ ! 0

)x2 # 16y$ ! 11x)1 # 4x2 y$ ! x

yy$ ! #8 cos!'x"yy$ ! 4 sin x

xy$ ! y!2 & x"y$ ! 3y

dr
ds

! 0.75s
dr
ds

! 0.75r

dy
dx

!
x2 # 3

6y2x2 & 5y
dy
dx

! 0

dy
dx

!
3x2

y2

dy
dx

!
x
y
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6.3 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.



Euler’s Method In Exercises 53 –56, (a) use Euler’s Method
with a step size of to approximate the particular
solution of the initial value problem at the given -value, (b) find
the exact solution of the differential equation analytically, and
(c) compare the solutions at the given -value.

53.

54.

55.

56.

57. Radioactive Decay The rate of decomposition of radioactive
radium is proportional to the amount present at any time. The
half-life of radioactive radium is 1599 years. What percent of a
present amount will remain after 50 years?

58. Chemical Reaction In a chemical reaction, a certain 
compound changes into another compound at a rate proportional
to the unchanged amount. If initially there is 40 grams of the
original compound, and there is 35 grams after 1 hour, when
will 75 percent of the compound be changed?

Slope Fields In Exercises 59–62, (a) write a differential
equation for the statement, (b) match the differential equation
with a possible slope field, and (c) verify your result by using a
graphing utility to graph a slope field for the differential
equation. [The slope fields are labeled (a), (b), (c), and (d).] To
print an enlarged copy of the graph, go to the website
www.mathgraphs.com.

(a) (b) 

(c) (d) 

59. The rate of change of with respect to is proportional to the
difference between and 4.

60. The rate of change of with respect to is proportional to the
difference between and 4.

61. The rate of change of with respect to is proportional to the
product of and the difference between and 4.

62. The rate of change of with respect to is proportional to 

63. Weight Gain A calf that weighs 60 pounds at birth gains
weight at the rate where is weight in
pounds and is time in years. Solve the differential equation.

(a) Use a computer algebra system to solve the differential
equation for and 1. Graph the three solutions.

(b) If the animal is sold when its weight reaches 800 pounds,
find the time of sale for each of the models in part (a).

(c) What is the maximum weight of the animal for each of the
models?

64. Weight Gain A calf that weighs pounds at birth gains
weight at the rate where is weight in
pounds and is time in years. Solve the differential equation.

In Exercises 65–70, find the orthogonal trajectories of the
family. Use a graphing utility to graph several members of each
family.

65. 66.

67. 68.

69. 70.

In Exercises 71–74, match the logistic equation with its graph.
[The graphs are labeled (a), (b), (c), and (d).]

(a) (b) 

(c) (d) 

71. 72.

73. 74. y !
12

1 & e#2xy !
12

1 & 1
2e#x

y !
12

1 & 3e#xy !
12

1 & e#x

y

x
−2−4−6 108642

10
8
6
4

12
14

y

x
−2−4−6 108642

10
8
6
4

12
14

y

x
−2−4−6 108642

10
8

2

12
14

y

x
−2−4−6 108642

10
8
6
4

12
14

y ! Cexy2 ! Cx3

y2 ! 2Cxx2 ! Cy

x2 # 2y2 ! Cx2 & y2 ! C

t
wdw#dt ! 1200 # w,

w0

0.9,k ! 0.8,

t
wdw#dt ! k!1200 # w",

y2.xy

yy
xy

x
xy

y
xy

x
−5 5

y

−2.5

2.5

x
−5 −1

9

5

y

x
−1

−5

5

9

y

x
−5 −1

9

5

y

x ! 1.5!1, 0"dy
dx

! 2x!1 & y2"

x ! 2!1, 2"dy
dx

!
2x & 12
3y2 # 4

x ! 1!0, 3"dy
dx

& 6xy2 ! 0

x ! 1!0, 5"dy
dx

! #6xy

x-valueInitial ConditionDifferential Equation

x

x
h ! 0.1

432 Chapter 6 Differential Equations

CAS



In Exercises 75 and 76, the logistic equation models the growth
of a population. Use the equation to (a) find the value of 
(b) find the carrying capacity, (c) find the initial population,
(d) determine when the population will reach 50% of its
carrying capacity, and (e) write a logistic differential equation
that has the solution 

75. 76.

In Exercises 77 and 78, the logistic differential equation models
the growth rate of a population. Use the equation to (a) find the
value of (b) find the carrying capacity, (c) graph a slope field
using a computer algebra system, and (d) determine the value
of at which the population growth rate is the greatest.

77. 78.

In Exercises 79–82, find the logistic equation that satisfies the
initial condition.

79.

80.

81.

82.

83. Endangered Species A conservation organization releases 25
Florida panthers into a game preserve. After 2 years, there are
39 panthers in the preserve. The Florida preserve has a carrying
capacity of 200 panthers.

(a) Write a logistic equation that models the population of 
panthers in the preserve.

(b) Find the population after 5 years.

(c) When will the population reach 100?

(d) Write a logistic differential equation that models the
growth rate of the panther population. Then repeat part (b)
using Euler’s Method with a step size of Compare
the approximation with the exact answers.

(e) At what time is the panther population growing most rapidly?
Explain.

84. Bacteria Growth At time a bacterial culture weighs
1 gram. Two hours later, the culture weighs 4 grams. The
maximum weight of the culture is 20 grams.

(a) Write a logistic equation that models the weight of the
bacterial culture.

(b) Find the culture’s weight after 5 hours.

(c) When will the culture’s weight reach 18 grams?

(d) Write a logistic differential equation that models the
growth rate of the culture’s weight. Then repeat part (b)
using Euler’s Method with a step size of Compare
the approximation with the exact answers.

(e) At what time is the culture’s weight increasing most
rapidly? Explain.

89. Show that if then 

90. Sailing Ignoring resistance, a sailboat starting from rest
accelerates at a rate proportional to the difference
between the velocities of the wind and the boat.

(a) The wind is blowing at 20 knots, and after 1 half-hour the
boat is moving at 10 knots. Write the velocity as a 
function of time 

(b) Use the result of part (a) to write the distance traveled by
the boat as a function of time.

True or False? In Exercises 91– 94, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

91. The function is always a solution of a differential
equation that can be solved by separation of variables.

92. The differential equation can be written
in separated variables form.

93. The function is homogeneous.

94. The families and are mutually
orthogonal.

x2 & y2 ! 2Kxx2 & y2 ! 2Cy

f !x, y" ! x2 # 4xy & 6y2 & 1

y$ ! xy # 2y & x # 2

y ! 0

t.
v

!dv#dt"

dy
dt

! ky!1 # y".y !
1

1 & be#kt ,

h ! 1.

t ! 0,

h ! 1.

!0, 15"dy
dt

!
3y
20

#
y2

1600

!0, 8"dy
dt

!
4y
5

#
y2

150

!0, 7"dy
dt

! 2.8y&1 #
y

10'
!0, 4"dy

dt
! y&1 #

y
36'

Initial ConditionLogistic Differential Equation

dP
dt

! 0.1P # 0.0004P2dP
dt

! 3P&1 #
P

100'
P

k,

P!t" !
5000

1 & 39e#0.2tP!t" !
2100

1 & 29e#0.75t

P$t%.

k,
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85. In your own words, describe how to recognize and solve
differential equations that can be solved by separation of
variables.

86. State the test for determining if a differential equation is
homogeneous. Give an example.

87. In your own words, describe the relationship between two
families of curves that are mutually orthogonal.

WRITING ABOUT CONCEPTS

88. Suppose the growth of a population is modeled by a 
logistic equation. As the population increases, its rate of
growth decreases. What do you think causes this to occur in
real-life situations such as animal or human populations?

CAPSTONE

95. A not uncommon calculus mistake is to believe that the
product rule for derivatives says that If

determine, with proof, whether there exists an
open interval and a nonzero function defined on

such that this wrong product rule is true for in 

This problem was composed by the Committee on the Putnam Prize Competition.
© The Mathematical Association of America. All rights reserved.

!a, b".x!a, b"
g!a, b"

f !x" ! ex2,
! fg"$ ! f$g$.

PUTNAM EXAM CHALLENGE

CAS



■ Solve a first-order linear differential equation.
■ Use linear differential equations to solve applied problems.
■ Solve a Bernoulli differential equation.

First-Order Linear Differential Equations
In this section, you will see how to solve a very important class of first-order 
differential equations—first-order linear differential equations.

To solve a linear differential equation, write it in standard form to identify the
functions and Then integrate and form the expression

Integrating factor

which is called an integrating factor. The general solution of the equation is

General solution

EXAMPLE 1 Solving a Linear Differential Equation

Find the general solution of

Solution For this equation, and So, the integrating factor is

Integrating factor

This implies that the general solution is

General solution ■!
1
2

ex & Ce#x.

! e#x&1
2

e2x & C'
!

1
ex * ex!ex" dx

y !
1

u!x" * Q!x"u!x" dx

! ex.

! e.dx

u!x" ! e. P!x" dx

Q!x" ! ex.P!x" ! 1

y$ & y ! ex.

y !
1

u!x" * Q!x"u!x" dx.

u!x" ! e.P!x"dx

P!x"Q!x".P!x"
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6.4 First-Order Linear Differential Equations

DEFINITION OF FIRST-ORDER LINEAR DIFFERENTIAL EQUATION

A first-order linear differential equation is an equation of the form

where and are continuous functions of This first-order linear differential
equation is said to be in standard form.

x.QP

dy
dx

& P!x"y ! Q!x"

NOTE It is instructive to see why the
integrating factor helps solve a linear
differential equation of the form

When both sides 
of the equation are multiplied by the
integrating factor the 
left-hand side becomes the derivative 
of a product.

Integrating both sides of this second
equation and dividing by produces
the general solution.

u!x"

/ye. P!x" dx0$ ! Q!x"e. P!x" dx

y$e.P!x" dx & P!x"ye .P!x" dx ! Q!x"e. P!x" dx

u!x" ! e.P!x" dx,

y$ & P!x"y ! Q!x".



EXAMPLE 2 Solving a First-Order Linear Differential Equation

Find the general solution of

Solution The standard form of the given equation is

Standard form

So, and you have

Integrating factor

So, multiplying each side of the standard form by yields

General solution

Several solution curves are shown in Figure 6.19.
■

!for C ! #2, #1, 0, 1, 2, 3, and 4"

y ! x2!ln (x( & C".

y
x2 ! ln (x( & C

y
x2 ! * 1

x
dx

d
dx ,

y
x2- !

1
x

y$
x2 #

2y
x3 !

1
x

1#x2

!
1
x2.

!
1

eln x2

e. P!x" dx ! e#ln x2

! #ln x2

* P!x" dx ! #* 2
x

dx

P!x" ! #2#x,

y$ # &2
x'y ! x.

y$ & P!x"y ! Q!x"

xy$ # 2y ! x2.
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THEOREM 6.3 SOLUTION OF A FIRST-ORDER LINEAR 
DIFFERENTIAL EQUATION

An integrating factor for the first-order linear differential equation

is The solution of the differential equation is

ye. P!x" dx !* Q!x"e. P!x" dx dx & C.

u!x" ! e.P!x" dx.

y$ & P!x"y ! Q!x"

Rather than memorizing the formula in Theorem 6.3, just remember that
multiplication by the integrating factor converts the left side of the differential
equation into the derivative of the product ■ye. P!x" dx.

e. P!x" dx

STUDY TIP

ANNA JOHNSON PELL WHEELER
(1883–1966)

Anna Johnson Pell Wheeler was awarded a
master’s degree from the University of Iowa
for her thesis The Extension of Galois Theory
to Linear Differential Equations in 1904.
Influenced by David Hilbert, she worked on
integral equations while studying infinite
linear spaces.
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EXAMPLE 3 Solving a First-Order Linear Differential Equation

Find the general solution of 

Solution The equation is already in the standard form So,
and

Because you can drop the absolute value signs and conclude that
the integrating factor is

Integrating factor

So, multiplying by produces

General solution

Several solution curves are shown in Figure 6.20. ■

Applications
One type of problem that can be described in terms of a differential equation involves
chemical mixtures, as illustrated in the next example.

EXAMPLE 4 A Mixture Problem

A tank contains 50 gallons of a solution composed of 90% water and 10% alcohol.
A second solution containing 50% water and 50% alcohol is added to the tank at
the rate of 4 gallons per minute. As the second solution is being added, the tank
is being drained at a rate of 5 gallons per minute, as shown in Figure 6.21. Assuming
the solution in the tank is stirred constantly, how much alcohol is in the tank after
10 minutes?

Solution Let be the number of gallons of alcohol in the tank at any time You
know that when Because the number of gallons of solution in the tank at
any time is and the tank loses 5 gallons of solution per minute, it must lose

gallons of alcohol per minute. Furthermore, because the tank is gaining
2 gallons of alcohol per minute, the rate of change of alcohol in the tank is given by

To solve this linear equation, let and obtain

Because you can drop the absolute value signs and conclude that

e. P!t" dt ! e#5 ln!50# t" !
1

!50 # t"5
.

t  <  50,

*P!t" dt ! * 5
50 # t

dt ! #5 ln (50 # t(.
P!t" ! 5#!50 # t"

dy
dt

& & 5
50 # t'y ! 2.

dy
dt

! 2 # & 5
50 # t'y

/5#!50 # t"0y
50 # t,

t ! 0.y ! 5
t.y

y ! tan t & C sec t.

y cos t ! sin t & C

y cos t ! * cos t dt

d
dt

/ y cos t0 ! cos t

cos ty$ # y tan t ! 1

! cos t.e. P!t" dt ! e ln !cos t"

#'#2 < t < '#2,

* P!t" dt ! #* tan t dt ! ln (cos t(.
P!t" ! #tan t,

y$ & P!t"y ! Q!t".

#'#2  < t  < '#2.y$ # y tan t ! 1,
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So, the general solution is

Because when you have

which means that the particular solution is

Finally, when the amount of alcohol in the tank is

which represents a solution containing 33.6% alcohol. ■

In most falling-body problems discussed so far in the text, air resistance has been
neglected. The next example includes this factor. In the example, the air resistance on
the falling object is assumed to be proportional to its velocity If is the gravitational
constant, the downward force on a falling object of mass is given by the 
difference But by Newton’s Second Law of Motion, you know that

acceleration

which yields the following differential equation.

EXAMPLE 5 A Falling Object with Air Resistance

An object of mass is dropped from a hovering helicopter. Find its velocity as a
function of time Assume that the air resistance is proportional to the object’s velocity.

Solution The velocity satisfies the equation

gravitational constant, constant of proportionality

Letting you can separate variables to obtain

Because the object was dropped, when so and it follows that

■v !
g # ge#bt

b
!

mg
k

!1 # e#kt#m".#bv ! #g & ge#bt

g ! C,t ! 0;v ! 0

C ! e#bC1g # bv ! Ce#bt.

 ln (g # bv( ! #bt # bC1

#
1
b

 ln (g # bv( ! t & C1

* dv
g # bv

! * dt

dv ! !g # bv" dt

b ! k#m,

k !g !
dv
dt

&
kv
m

! g.

v

t.
m

dv
dt

&
kv
m

! gm
dv
dt

! mg # kv

!a! m!dv#dt"F ! ma

mg # kv.
mF

gv.

y !
50 # 10

2
# 20&50 # 10

50 '5
+ 13.45 gal

t ! 10,

y !
50 # t

2
# 20&50 # t

50 '
5

.

#
20
505 ! C5 !

50
2

& C!50"5

t ! 0,y ! 5

y !
50 # t

2
& C!50 # t"5.

y
!50 # t"5 ! * 2

!50 # t"5
dt !

1
2!50 # t"4 & C
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NOTE Notice in Example 5 that the
velocity approaches a limit of as 
a result of the air resistance. For falling-
body problems in which air resistance is
neglected, the velocity increases without
bound.

mg#k



A simple electric circuit consists of electric current (in amperes), a resistance 
(in ohms), an inductance (in henrys), and a constant electromotive force (in volts),
as shown in Figure 6.22. According to Kirchhoff’s Second Law, if the switch is
closed when the applied electromotive force (voltage) is equal to the sum of the
voltage drops in the rest of the circuit. This in turn means that the current 
satisfies the differential equation

EXAMPLE 6 An Electric Circuit Problem

Find the current as a function of time (in seconds), given that satisfies the
differential equation

where and are nonzero constants.

Solution In standard form, the given linear equation is 

Let so that and, by Theorem 6.3,

So the general solution is

■

Bernoulli Equation
A well-known nonlinear equation that reduces to a linear one with an appropriate
substitution is the Bernoulli equation, named after James Bernoulli (1654–1705).

I !
1

4L2 & R2 !R sin 2t # 2L cos 2t" & Ce#!R#L"t.

I ! e#!R#L"t , 1
4L2 & R2 e!R#L"t!R sin 2t # 2L cos 2t" & C-

!
1

4L2 & R2 e!R#L"t!R sin 2t # 2L cos 2t" & C.

Ie!R#L"t !
1
L * e!R#L"t sin 2t dt

e. P!t" dt ! e!R#L"t,P!t" ! R#L,

dI
dt

&
R
L

I !
1
L

 sin 2t.

LR

L!dI#dt" & RI ! sin 2t

ItI

L
dI
dt

& RI ! E.

I
t ! 0,

S
EL

RI
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L

Figure 6.22

TECHNOLOGY

Bernoulli equationy$ & P!x"y ! Q!x"yn

The integral in Example 6 was found using symbolic algebra 
software. If you have access to Maple, Mathematica, or the TI-89, try using it to
integrate

In Chapter 8 you will learn how to integrate functions of this type using integration
by parts.

1
L * e!R#L"t sin 2t dt.



This equation is linear if and has separable variables if So, in the
following development, assume that and Begin by multiplying by 
and to obtain

which is a linear equation in the variable Letting produces the linear
equation

Finally, by Theorem 6.3, the general solution of the Bernoulli equation is

EXAMPLE 7 Solving a Bernoulli Equation

Find the general solution of 

Solution For this Bernoulli equation, let and use the substitution

Let

Differentiate.

Multiplying the original equation by produces

Write original equation.

Multiply each side by 

Linear equation:

This equation is linear in Using produces

which implies that is an integrating factor. Multiplying the linear equation by this
factor produces

Linear equation

Multiply by integrating factor.

Write left side as derivative.

Integrate each side.

Divide each side by 

Finally, substituting the general solution is

General solution ■y4 ! 2e#x2
& Ce#2x2.

z ! y4,

e2x2.z ! 2e#x2
& Ce#2x2.

ze2x2
! 2ex2

& C

ze2x2
! * 4xex2 dx

d
dx

/ze2x20 ! 4xex2

z$e2x2
& 4xze2x2

! 4xex2

z$ & 4xz ! 4xe#x2

e2x2

! 2x2

* P!x" dx ! * 4x dx

P!x" ! 4xz.

z$ & P!x"z ! Q!x"z$ & 4xz ! 4xe#x2.

4y3. 4y3y$ & 4xy4 ! 4xe#x2

y$ & xy ! xe#x2y#3

4y3

z$ ! 4y3y$.

z ! y1#n ! y1#!#3".z ! y4

n ! #3,

y$ & xy ! xe#x2y#3.

dz
dx

& !1 # n"P!x"z ! !1 # n"Q!x".

z ! y1#ny1#n.

d
dx

/ y1#n0 & !1 # n"P!x"y1#n ! !1 # n"Q!x"

!1 # n"y#ny$ & !1 # n"P!x"y1#n ! !1 # n"Q!x"
y#ny$ & P!x"y1#n ! Q!x"

!1 # n"
y#nn % 1.n % 0

n ! 1.n ! 0,
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y1#ne*!1#n"P!x" dx ! * !1 # n"Q!x"e*!1#n"P!x" dx dx & C.



So far you have studied several types of first-order differential equations. Of these,
the separable variables case is usually the simplest, and solution by an integrating
factor is ordinarily used only as a last resort.
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SUMMARY OF FIRST-ORDER DIFFERENTIAL EQUATIONS

1. Separable variables:

2. Homogeneous: where and are 
th-degree homogeneous functions

3. Linear:

4. Bernoulli equation: y$ & P!x"y ! Q!x"yn

y$ & P!x"y ! Q!x"
n

NMM!x, y"dx & N!x, y"dy ! 0,

M!x"dx & N!y"dy ! 0

Form of EquationMethod                             

In Exercises 1– 4, determine whether the differential equation is
linear. Explain your reasoning.

1. 2.

3. 4.

In Exercises 5–14, solve the first-order linear differential
equation.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

Slope Fields In Exercises 15 and 16, (a) sketch an approximate
solution of the differential equation satisfying the given initial
condition by hand on the slope field, (b) find the particular 
solution that satisfies the given initial condition, and (c) use a
graphing utility to graph the particular solution. Compare the
graph with the hand-drawn graph in part (a). To print an
enlarged copy of the graph, go to the website www.mathgraphs.com.

15. 16.

In Exercises 17–24, find the particular solution of the differen-
tial equation that satisfies the boundary condition.

17.

18.

19.

20.

21.

22.

23.

24.

25. Population Growth When predicting population growth,
demographers must consider birth and death rates as well as
the net change caused by the difference between the rates of
immigration and emigration. Let be the population at time 
and let be the net increase per unit time resulting from the
difference between immigration and emigration. So, the rate of
growth of the population is given by

is constant.

Solve this differential equation to find as a function of time if
at time the size of the population is 

26. Investment Growth A large corporation starts at time to
invest part of its receipts continuously at a rate of dollars per
year in a fund for future corporate expansion. Assume that the
fund earns percent interest per year compounded continuously.
So, the rate of growth of the amount in the fund is given by

where when Solve this differential equation for 
as a function of t.

At ! 0.A ! 0

dA
dt

! rA & P

A
r

P
t ! 0

P0.t ! 0
P

N
dP
dt

! kP & N,

N
tP

y!4" ! 22x y$ # y ! x3 # x

y!1" ! 10x dy ! !x & y & 2" dx

y!1" ! 2y$ & !2x # 1"y ! 0

y!2" ! 2y$ & &1
x'y ! 0

y!0" ! 4y$ & y sec x ! sec x

y!0" ! 1y$ & y tan x ! sec x & cos x

y!1" ! ex3y$ & 2y ! e1#x2

y!0" ! 5y$ cos2 x & y # 1 ! 0

Boundary ConditionDifferential Equation               

−4

x

y

4

−4 4x
−4 4

−3

5

y

!)', 0"!0, 1"

y$ & &1
x'y ! sin x2,

dy
dx

! ex # y,

y$ & y tan x ! sec xy$ # 3x2y ! ex3

y$ & 3y ! e3x!x # 1"y$ & y ! x2 # 1

!y # 1" sin x dx # dy ! 0!y & 1" cos x dx # dy ! 0

y$ & 2xy ! 10xy$ # y ! 16

dy
dx

& &2
x'y ! 3x # 5

dy
dx

& &1
x'y ! 6x & 2

2 # y$
y

! 5xy$ # y sin x ! xy2

2xy # y$ ln x ! yx3y$ & xy ! ex & 1

6.4 Exercises See www.CalcChat.com for worked-out solutions to odd-numbered exercises.



Investment Growth In Exercises 27 and 28, use the result of
Exercise 26.

27. Find for the following.

(a) and years

(b) and years

28. Find if the corporation needs $1,000,000 and it can invest
$125,000 per year in a fund earning 8% interest compounded
continuously.

29. Intravenous Feeding Glucose is added intravenously to the
bloodstream at the rate of units per minute, and the body
removes glucose from the bloodstream at a rate proportional to
the amount present. Assume that is the amount of glucose
in the bloodstream at time 

(a) Determine the differential equation describing the rate of
change of glucose in the bloodstream with respect to time.

(b) Solve the differential equation from part (a), letting 
when

(c) Find the limit of as 

30. Learning Curve The management at a certain factory has
found that the maximum number of units a worker can produce
in a day is 75. The rate of increase in the number of units 
produced with respect to time in days by a new employee is
proportional to 

(a) Determine the differential equation describing the rate of
change of performance with respect to time.

(b) Solve the differential equation from part (a).

(c) Find the particular solution for a new employee who
produced 20 units on the first day at the factory and 35 units
on the twentieth day.

Mixture In Exercises 31–35, consider a tank that at time 
contains gallons of a solution of which, by weight, pounds
is soluble concentrate. Another solution containing pounds of
the concentrate per gallon is running into the tank at the rate of

gallons per minute. The solution in the tank is kept well
stirred and is withdrawn at the rate of gallons per minute.

31. If is the amount of concentrate in the solution at any time 
show that

32. If is the amount of concentrate in the solution at any time 
write the differential equation for the rate of change of with
respect to if 

33. A 200-gallon tank is full of a solution containing 25 pounds of
concentrate. Starting at time distilled water is admitted
to the tank at a rate of 10 gallons per minute, and the
well-stirred solution is withdrawn at the same rate.

(a) Find the amount of concentrate in the solution as a
function of 

(b) Find the time at which the amount of concentrate in the
tank reaches 15 pounds.

(c) Find the quantity of the concentrate in the solution as

34. Repeat Exercise 33, assuming that the solution entering the
tank contains 0.04 pound of concentrate per gallon.

35. A 200-gallon tank is half full of distilled water. At time 
a solution containing 0.5 pound of concentrate per gallon enters
the tank at the rate of 5 gallons per minute, and the well-stirred
mixture is withdrawn at the rate of 3 gallons per minute.

(a) At what time will the tank be full?

(b) At the time the tank is full, how many pounds of concentrate
will it contain?

(c) Repeat parts (a) and (b), assuming that the solution entering
the tank contains 1 pound of concentrate per gallon.

Falling Object In Exercises 37 and 38, consider an eight-pound
object dropped from a height of 5000 feet, where the air
resistance is proportional to the velocity.

37. Write the velocity of the object as a function of time if the
velocity after 5 seconds is approximately feet per 
second. What is the limiting value of the velocity function?

38. Use the result of Exercise 37 to write the position of the object
as a function of time. Approximate the velocity of the object
when it reaches ground level.

Electric Circuits In Exercises 39 and 40, use the differential
equation for electric circuits given by

In this equation, is the current, is the resistance, is the
inductance, and is the electromotive force (voltage).

39. Solve the differential equation for the current given a constant
voltage 

40. Use the result of Exercise 39 to find the equation for the current
if volts, ohms, and henrys.
When does the current reach 90% of its limiting value?

L ! 4R ! 600I!0" ! 0, E0 ! 120

E0.

E
LRI

L
dI
dt

1 RI ! E.

#101

t ! 0,

t →(.

t.
Q

t ! 0,

r1 ! r2 ! r.t
Q

t,Q

dQ
dt

&
r2Q

v0 & !r1 # r2"t
! q1r1.

t,Q

r2

r1

q1

q0v0

t ! 0

75 # N.
t

N

t → (.Q!t"
t ! 0.

Q ! Q0

t.
Q!t"

q

t

t ! 25P ! $550,000, r ! 5.9%,

t ! 10P ! $275,000, r ! 8%,

A
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36. Suppose the expression is an integrating factor for
Which of the following is equal to

Verify your answer.

(a)

(b)

(c)

(d) Q$!x" u!x)

Q!x" u!x)

P$!x) u!x"
P!x) u!x"

u$!x"?
y$ & P!x"y ! Q!x".

u!x"
CAPSTONE

41. Give the standard form of a first-order linear differential
equation. What is its integrating factor?

42. Give the standard form of the Bernoulli equation. Describe
how one reduces it to a linear equation.

WRITING ABOUT CONCEPTS



In Exercises 43–46, match the differential equation with its
solution.

43. (a)

44. (b)

45. (c)

46. (d)

In Exercises 47–54, solve the Bernoulli differential equation.

47.

48.

49.

50.

51.

52.

53.

54.

Slope Fields In Exercises 55–58, (a) use a graphing utility to
graph the slope field for the differential equation, (b) find the
particular solutions of the differential equation passing through
the given points, and (c) use a graphing utility to graph the
particular solutions on the slope field.

55.

56.

57.

58.

In Exercises 59–70, solve the first-order differential equation by
any appropriate method.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

True or False? In Exercises 71 and 72, determine whether the
statement is true or false. If it is false, explain why or give an
example that shows it is false.

71. is a first-order linear differential equation.

72. is a first-order linear differential equation.y$ & xy ! exy

y$ & x)y ! x2

x dx & !y & ey"!x2 & 1" dy ! 0

3!y # 4x2" dx & x dy ! 0

y dx & !3x & 4y" dy ! 0

!x2y4 # 1" dx & x3y3 dy ! 0

!y2 & xy" dx # x2 dy ! 0

!2y # ex"dx & x dy ! 0

!x & y" dx # x dy ! 0

!3y2 & 4xy"dx & !2xy & x2"dy ! 0

y$ ! 2x)1 # y2

y cos x # cos x &
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! 0

dy
dx

!
x # 3

y!y & 4"

dy
dx

!
e2x&y

ex#y

!0, 3", !0, 1"dy
dx

& 2xy ! xy2

!1, 1", !3, #1"dy
dx

& !cot x"y ! 2

PointsDifferential Equation

!0, 7
2", !0, #1

2"dy
dx

& 4x3y ! x3

!#2, 4", !2, 8"dy
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#
1
x

y ! x2

PointsDifferential Equation

yy$ # 2y2 ! ex

y$ # y ! e x 3)y

y$ # y ! y3
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A person’s weight depends on both the number of calories consumed
and the energy used. Moreover, the amount of energy used depends on
a person’s weight—the average amount of energy used by a person is
17.5 calories per pound per day. So, the more weight a person loses,
the less energy a person uses (assuming that the person maintains a
constant level of activity). An equation that can be used to model
weight loss is

where is the person’s weight (in pounds), is the time in days, and
is the constant daily calorie consumption.

(a) Find the general solution of the differential equation.

(b) Consider a person who weighs 180 pounds and begins a diet of
2500 calories per day. How long will it take the person to lose 
10 pounds? How long will it take the person to lose 35 pounds?

(c) Use a graphing utility to graph the solution. What is the
“limiting” weight of the person?

(d) Repeat parts (b) and (c) for a person who weighs 200 pounds
when the diet is started.

C
tw

&dw
dt ' !

C
3500

#
17.5
3500

w

Weight Loss

S E C T I O N  P R O J E C T

■ FOR FURTHER INFORMATION For more information on 
modeling weight loss, see the article “A Linear Diet Model” by Arthur
C. Segal in The College Mathematics Journal.



1. Determine whether the function is a solution of the
differential equation 

2. Determine whether the function is a solution of
the differential equation 

In Exercises 3–10, use integration to find a general solution of
the differential equation.

3. 4.

5. 6.

7. 8.

9. 10.

Slope Fields In Exercises 11 and 12, a differential equation
and its slope field are given. Determine the slopes (if possible) in
the slope field at the points given in the table.

11. 12.

Slope Fields In Exercises 13–18, (a) sketch the slope field for
the differential equation, and (b) use the slope field to sketch the
solution that passes through the given point. Use a graphing
utility to verify your results.

13.

14.

15.

16.

17.

18.

In Exercises 19–24, solve the differential equation.

19. 20.

21. 22.

23. 24.

In Exercises 25–28, find the exponential function that
passes through the two points.

25. 26.

27. 28.

29. Air Pressure Under ideal conditions, air pressure decreases
continuously with the height above sea level at a rate propor-
tional to the pressure at that height. The barometer reads
30 inches at sea level and 15 inches at 18,000 feet. Find the
barometric pressure at 35,000 feet.

30. Radioactive Decay Radioactive radium has a half-life of
approximately 1599 years. The initial quantity is 15 grams.
How much remains after 750 years?

31. Sales The sales (in thousands of units) of a new product
after it has been on the market for years is given by

(a) Find as a function of if 5000 units have been sold after
1 year and the saturation point for the market is 30,000
units that is,

(b) How many units will have been sold after 5 years?

(c) Use a graphing utility to graph this sales function.

32. Sales The sales (in thousands of units) of a new product
after it has been on the market for years is given by

(a) Find as a function of if 4000 units have been sold after
1 year.

(b) How many units will saturate this market?

(c) How many units will have been sold after 5 years?

(d) Use a graphing utility to graph this sales function.

33. Population Growth A population grows continuously at the
rate of 1.85%. How long will it take the population to double?
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34. Fuel Economy An automobile gets 28 miles per gallon of
gasoline for speeds up to 50 miles per hour. Over 50 miles per
hour, the number of miles per gallon drops at the rate of
12 percent for each 10 miles per hour.

(a) is the speed and is the number of miles per gallon. Find
as a function of by solving the differential equation

(b) Use the function in part (a) to complete the table.

In Exercises 35– 40, solve the differential equation.

35. 36.

37. 38.

39. 40.

41. Verify that the general solution satisfies the
differential equation Then find the
particular solution that satisfies the initial condition and

when

42. Vertical Motion A falling object encounters air resistance that
is proportional to its velocity. The acceleration due to gravity is

meters per second per second. The net change in velocity
is

(a) Find the velocity of the object as a function of time if the
initial velocity is 

(b) Use the result of part (a) to find the limit of the velocity as
approaches infinity.

(c) Integrate the velocity function found in part (a) to find the
position function 

Slope Fields In Exercises 43 and 44, sketch a few solutions of
the differential equation on the slope field and then find the 
general solution analytically. To print an enlarged copy of the
graph, go to the website www.mathgraphs.com.

43. 44.

In Exercises 45 and 46, the logistic equation models the growth
of a population. Use the equation to (a) find the value of 
(b) find the carrying capacity, (c) find the initial population,
(d) determine when the population will reach 50% of its
carrying capacity, and (e) write a logistic differential equation
that has the solution 

45. 46.

In Exercises 47 and 48, find the logistic equation that satisfies
the initial condition.

47.

48.

49. Environment A conservation department releases 1200 
brook trout into a lake. It is estimated that the carrying capacity
of the lake for the species is 20,400. After the first year, there
are 2000 brook trout in the lake.

(a) Write a logistic equation that models the number of brook
trout in the lake.

(b) Find the number of brook trout in the lake after 8 years.

(c) When will the number of brook trout reach 10,000?

50. Environment Write a logistic differential equation that
models the growth rate of the brook trout population in
Exercise 49. Then repeat part (b) using Euler’s Method with a
step size of Compare the approximation with the exact
answers.

In Exercises 51–60, solve the first-order linear differential
equation.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

In Exercises 61–64, solve the Bernoulli differential equation.

61. Hint:

62.

63.

64.

In Exercises 65–68, write an example of the given differential
equation. Then solve your equation.

65. Homogeneous 66. Logistic

67. First-order linear 68. Bernoulli
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1. The differential equation

where and are positive constants, is called the doomsday
equation.

(a) Solve the doomsday equation

given that Find the time at which

(b) Solve the doomsday equation

given that Explain why this equation is called the
doomsday equation.

2. A thermometer is taken from a room at to the outdoors,
where the temperature is The reading drops to 
after 1 minute. Determine the reading on the thermometer after
5 minutes.

3. Let represent sales of a new product (in thousands of units), let
represent the maximum level of sales (in thousands of units),

and let represent time (in months). The rate of change of with
respect to varies jointly as the product of and 

(a) Write the differential equation for the sales model if
when and when 

Verify that

(b) At what time is the growth in sales increasing most rapidly?

(c) Use a graphing utility to graph the sales function.

(d) Sketch the solution from part (a) on the slope field shown in
the figure below. To print an enlarged copy of the graph, go
to the website www.mathgraphs.com.

(e) If the estimated maximum level of sales is correct, use the
slope field to describe the shape of the solution curves for
sales if, at some period of time, sales exceed 

4. Another model that can be used to represent population growth
is the Gompertz equation, which is the solution of the
differential equation

where is a constant and is the carrying capacity.

(a) Solve the differential equation.

(b) Use a graphing utility to graph the slope field for the differ-
ential equation when and 

(c) Describe the behavior of the graph as 

(d) Graph the equation you found in part (a) for 
and Determine the concavity of the

graph and how it compares with the general solution of the
logistic differential equation.

5. Show that the logistic equation can be 
written as

What can you conclude about the graph of the logistic equation?

6. Although it is true for some functions and a common mistake
in calculus is to believe that the Product Rule for derivatives is

(a) Given find such that 

(b) Given an arbitrary function find a function such that

(c) Describe what happens if 

7. Torricelli’s Law states that water will flow from an opening at
the bottom of a tank with the same speed that it would attain
falling from the surface of the water to the opening. One of the
forms of Torricelli’s Law is

where is the height of the water in the tank, is the area of the
opening at the bottom of the tank, is the horizontal cross-
sectional area at height and is the acceleration due to gravity

feet per second per second A hemispherical water
tank has a radius of 6 feet. When the tank is full, a circular valve
with a radius of 1 inch is opened at the bottom, as shown in the
figure. How long will it take for the tank to drain completely?
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8. The cylindrical water tank shown in the figure has a height of
18 feet. When the tank is full, a circular valve is opened at the
bottom of the tank. After 30 minutes, the depth of the water is
12 feet.

(a) How long will it take for the tank to drain completely?

(b) What is the depth of the water in the tank after 1 hour?

9. Suppose the tank in Exercise 8 has a height of 20 feet and a radius
of 8 feet, and the valve is circular with a radius of 2 inches.
The tank is full when the valve is opened. How long will it take
for the tank to drain completely?

10. In hilly areas, radio reception may be poor. Consider a situation
in which an FM transmitter is located at the point 
behind a hill modeled by the graph of

and a radio receiver is on the opposite side of the hill. (Assume
that the axis represents ground level at the base of the hill.)

(a) What is the closest position the radio can be to the hill
so that reception is unobstructed?

(b) Write the closest position of the radio with 
represented as a function of if the transmitter is located at

(c) Use a graphing utility to graph the function for in part (b).
Determine the vertical asymptote of the function and
interpret its meaning.

11. Biomass is a measure of the amount of living matter in an
ecosystem. Suppose the biomass in a given ecosystem
increases at a rate of about 3.5 tons per year, and decreases by
about 1.9% per year. This situation can be modeled by the
differential equation

(a) Solve the differential equation.

(b) Use a graphing utility to graph the slope field for the
differential equation. What do you notice?

(c) Explain what happens as 

In Exercises 12–14, a medical researcher wants to determine the
concentration (in moles per liter) of a tracer drug injected
into a moving fluid. Solve this problem by considering a single-
compartment dilution model (see figure). Assume that the fluid
is continuously mixed and that the volume of the fluid in the
compartment is constant.

Figure for 12–14

12. If the tracer is injected instantaneously at time then the
concentration of the fluid in the compartment begins diluting
according to the differential equation

when

(a) Solve this differential equation to find the concentration 
as a function of time 

(b) Find the limit of as 

13. Use the solution of the differential equation in Exercise 12 to
find the concentration as a function of time and use a
graphing utility to graph the function.

(a) liters, liter per minute, and mole
per liter

(b) liters, liters per minute, and mole
per liter

14. In Exercises 12 and 13, it was assumed that there was a single
initial injection of the tracer drug into the compartment. Now
consider the case in which the tracer is continuously injected
beginning at at the rate of moles per minute.

Considering to be negligible compared with use the
differential equation

when

(a) Solve this differential equation to find the concentration 
as a function of time 

(b) Find the limit of as t →(.C
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