

Name:

Date:

Finding Limits Graphically & Numerically

Complete the table and use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result. Sketch the graph in the neighborhood of the limit point.

1.	$\lim_{x \to 4} \frac{x - 4}{x^2 - 3x - 4}$						
	x	3.9	3.99	3.999	4.001	4.01	4.1
	f(x)						

-		3.99	3.999	4.001	4.01	1000
$f(\mathbf{x})$	0.2041	0.2004	0.2000	0.2000	0.1996	0.1961

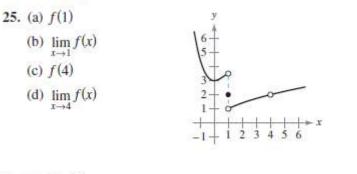
5	lim	[1/(x+1)] - (1/4)
5.	$x \rightarrow 3$	x - 3

x	2.9	2.99	2.999	3.001	3.01	3.1
f(x)						

x	2.9	2.99	2.999	3.001	3.01	3.1
f(x)	-0.0641	-0.0627	-0.0625	-0.0625	-0.0623	-0.0610

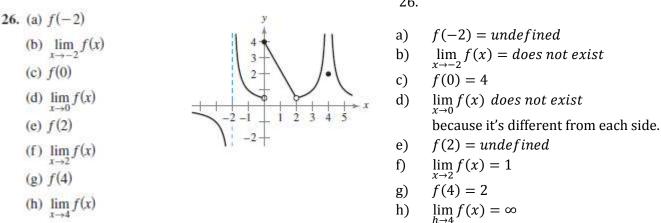
7. $\lim_{x \to 0} \frac{\sin x}{x}$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)						

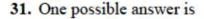

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)	0.9983	0.99998	1.0000	1.0000	0.99998	0.9983

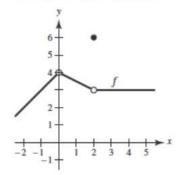
8. $\lim_{x \to 0} \frac{\cos x - 1}{x}$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)						


$$\lim_{x \to 0} \frac{\cos x - 1}{x} \approx 0$$

In Exercises 25 and 26, use the graph of the function f to decide whether the value of the given quantity exists. If it does, find it. If not, explain why.


- 25. (a) f(1) exists. The black dot at (1, 2) indicates that f(1) = 2.
 - (b) $\lim_{x \to \infty} f(x)$ does not exist. As x approaches 1 from the left, f(x) approaches 3.5, whereas as x approaches 1 from the right, f(x) approaches 1.
 - (c) f(4) does not exist. The hollow circle at (4, 2) indicates that f is not defined at 4.
 - (d) $\lim_{x\to 1} f(x)$ exists. As x approaches 4, f(x) approaches 2: $\lim_{x \to d} f(x) = 2$.


26.

In Exercises 31 and 32, sketch a graph of a function f that satisfies the given values. (There are many correct answers)

31. $f(0)$ is undefined.	32. $f(-2) = 0$
$\lim_{x \to 0} f(x) = 4$	f(2) = 0
f(2) = 6	$\lim_{x \to -2} f(x) = 0$
$\lim_{x\to 2} f(x) = 3$	$\lim_{x \to 2} f(x) \text{ does not exist.}$

