Name: Date:

1A Exercises

Finding Limits Graphically & Numerically

Complete the table and use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result. Sketch the graph in the neighborhood of the limit point.

1.
$$\lim_{x\to 4} \frac{x-4}{x^2-3x-4}$$

x	3.9	3.99	3.999	4.001	4.01	4.1
f(x)						

5.
$$\lim_{x \to 3} \frac{[1/(x+1)] - (1/4)}{x-3}$$

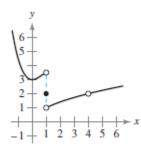
x	2.9	2.99	2.999	3.001	3.01	3.1
f(x)						

7.
$$\lim_{x \to 0} \frac{\sin x}{x}$$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)						

8.
$$\lim_{x \to 0} \frac{\cos x - 1}{x}$$

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)						


In Exercises 25 and 26, use the graph of the function f to decide whether the value of the given quantity exists. If it does, find it. If not, explain why.

(b)
$$\lim_{x \to 1} f(x)$$

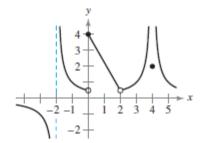
(c)
$$f(4)$$

(d)
$$\lim_{x\to 4} f(x)$$

26. (a)
$$f(-2)$$

(b)
$$\lim_{x \to -2} f(x)$$

(c)
$$f(0)$$


(d)
$$\lim_{x\to 0} f(x)$$

(e)
$$f(2)$$

(f)
$$\lim_{x\to 2} f(x)$$

(g)
$$f(4)$$

(h)
$$\lim_{x\to 4} f(x)$$

In Exercises 31 and 32, sketch a graph of a function f that satisfies the given values. (There are many correct answers)

31.
$$f(0)$$
 is undefined.

$$\lim_{x\to 0} f(x) = 4$$

$$f(2) = 6$$

$$\lim_{x\to 2} f(x) = 3$$

32.
$$f(-2) = 0$$

$$f(2) = 0$$

$$\lim_{x \to -2} f(x) = 0$$

 $\lim_{x\to 2} f(x)$ does not exist.