

Name:

Date:

Finding Limits Analytically

Complete the table and use the result to estimate the limit. Use a graphing utility to graph the function to confirm your result. Sketch the graph in the neighborhood of the limit point.

Find the limit.

Use the information to evaluate the limits

39.
$$\lim_{x \to c} f(x) = 4$$

(a)
$$\lim_{x \to c} [f(x)]^{3}$$

(b)
$$\lim_{x \to c} \sqrt{f(x)}$$

(c)
$$\lim_{x \to c} [3f(x)]$$

(d)
$$\lim_{x \to \infty} [f(x)]^{3/2}$$

Find the limit of the function (if it exists). Write a simpler function that agrees with the given function at all but one point. Use a graphing utility to confirm your result.

	$r^{2} - 1$	16	lim	$\frac{2x^2 - x - 3}{2}$
45.	$\lim_{x \to -1} \frac{x}{x+1} $	40.	$\lim_{x \to -1}$	x + 1

47.
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$
49.
$$\lim_{x \to 0} \frac{x}{x^2 - x}$$
52.
$$\lim_{x \to 3} \frac{3 - x}{x^2 - 9}$$
53.
$$\lim_{x \to -3} \frac{x^2 + x - 6}{x^2 - 9}$$

55.
$$\lim_{x \to 4} \frac{\sqrt{x+5}-3}{x-4}$$
58.
$$\lim_{x \to 0} \frac{\sqrt{2+x}-\sqrt{2}}{x}$$

59.
$$\lim_{x \to 0} \frac{[1/(3+x)] - (1/3)}{x}$$
60.
$$\lim_{x \to 0} \frac{[1/(x+4)] - (1/4)}{x}$$

Determine the limit of the trigonometric function (if it exists).

65.	$\lim \frac{\sin x}{x}$	66 lim	3(1	$-\cos x$)
	$x \to 0$ 5x	$\begin{array}{c} 00. \underset{x \to 0}{\text{IIII}} \\ \end{array}$		X

71	$\lim_{h \to 0} \frac{1}{2}$	(1	—	$(\cos h)^2$
/1.				h

68	B. $\lim_{\theta \to 0}$	cos	θ tan	θ
00.			θ	

73. $\lim_{x \to \pi/2} \frac{\cos x}{\cot x}$

74.
$$\lim_{x \to \pi/4} \frac{1 - \tan x}{\sin x - \cos x}$$

76.
$$\lim_{x \to 0} \frac{\sin 2x}{\sin 3x} \qquad \left[\text{Hint: Find } \lim_{x \to 0} \left(\frac{2 \sin 2x}{2x} \right) \left(\frac{3x}{3 \sin 3x} \right) \right]$$

Optional Challenge Problem. Hint for part (d): Multiply the bottom by $\frac{\sec x+1}{\sec x+1}$ and then remember that $\sec^2 x - 1 = \tan^2 x$

125. *Graphical Reasoning* Consider $f(x) = \frac{\sec x - 1}{x^2}$.

- (a) Find the domain of f.
- (b) Use a graphing utility to graph f. Is the domain of f obvious from the graph? If not, explain.
- (c) Use the graph of *f* to approximate $\lim_{x\to 0} f(x)$.
- (d) Confirm your answer to part (c) analytically.