

Unit 1 Toolkit: Limits

1A: Finding Limits Graphically and Numerically (1.2)

Definition: If f(x) becomes arbitrarily close (i.e. really close) to a single number *L* as *x* approaches *c* from *either side*, then the **limit of** f(x), as *x* approaches *c*, is *L*. This is written as

Epsilon-Delta $(\varepsilon - \delta)$ Definition of a Limit:

Let f(x) be a function defined on an open interval including c (except possibly at the value c, and let L be a real number. Then we can say

$$\lim_{x \to c} f(x) = l$$

if for any small number $\varepsilon > 0$, there exists a $\delta > 0$ such that if $0 < |x - c| < \delta$, then $|f(x) - L| < \varepsilon$.

1B: Evaluating Limits Analytically (1.3)

Some General Limits

$$\lim_{x \to b} \boldsymbol{c} = \boldsymbol{c} , \qquad \lim_{x \to b} x = b , \qquad \lim_{x \to c} x^n = c^n$$

THEOREM 1.2 PROPERTIES OF LIMITS

Let *b* and *c* be real numbers, let *n* be a positive integer, and let *f* and *g* be functions with the following limits. $\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = K$ **1.** Scalar multiple: $\lim_{x \to c} [bf(x)] = bL$ **2.** Sum or difference: $\lim_{x \to c} [f(x) \pm g(x)] = L \pm K$ **THEO 3.** Product: $\lim_{x \to c} [f(x)g(x)] = LK$ **4.** Quotient: $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{K}, \text{ provided } K \neq 0$

5. Power: $\lim_{x \to \infty} [f(x)]^n = L^n$

THEOREM 1.3 LIMITS OF POLYNOMIAL AND RATIONAL FUNCTIONS

If p is a polynomial function and c is a real number, then

$$\lim_{x \to c} p(x) = p(c)$$

If r is a rational function given by r(x) = p(x)/q(x) and c is a real number such that $q(c) \neq 0$, then

$$\lim_{x\to c} r(x) = r(c) = \frac{p(c)}{q(c)}.$$

THEOREM 1.4 THE LIMIT OF A FUNCTION INVOLVING A RADICAL

Let *n* be a positive integer. The following limit is valid for all *c* if *n* is odd, and is valid for c > 0 if *n* is even.

 $\lim \sqrt[n]{x} = \sqrt[n]{c}$

THEOREM 1.5 THE LIMIT OF A COMPOSITE FUNCTION

If f and g are functions such that
$$\lim_{x\to c} g(x) = L$$
 and $\lim_{x\to L} f(x) = f(L)$, then

$$\lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right) = f(L)$$

Steps for evaluating the limit of f(x) as $x \to c$

- 1. Can you evaluate the limit by direct substitution? i.e. Does f(c) exist and is it the limit?
- 2. If f(c) does not exist, is there a function g(x) = f(x) for all values *except* x = c? Then

$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = g(c)$$

3. Use a table or a graph to reinforce your conclusion.

Two Special Trigonometry Limits

The following are two special limits that we will use as we study calculus.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 , \qquad \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

THEOREM 1.8 THE SQUEEZE THEOREM

If $h(x) \le f(x) \le g(x)$ for all x in an open interval containing c, except possibly at c itself, and if

$$\lim_{x \to c} h(x) = L = \lim_{x \to c} g(x)$$

then $\lim f(x)$ exists and is equal to L.

1C: Continuity and One-Sided Limits (1.4)

Continuity Requirements. A function *f* is continuous at x = c if these conditions are met:

- 1. f(c) is defined
- 2. $\lim_{x \to c} f(x)$ exists
- 3. $\lim_{x \to c} f(x) = f(c)$

One sided limits:

Continuous on an interval (*a*, *b*) implies that f(x) is continuous on all points on the interval.

> **Continuous everywhere** implies that f(x) is continuous on the entire real line $(-\infty, \infty)$.

- Limit from the right: $\lim_{x \to c^+} f(x) = L$
- Limit from the left: $\lim_{x \to c^-} f(x) = L$ \circ Note $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to c^-} f(x) = L$ and $\lim_{x \to c^+} f(x) = L$

Properties of Continuity. If *b* is real number and functions *f* and *g* are continuous at x = c, then the following are also continuous:

$$b \cdot f$$
, $f \pm g$, fg , $\frac{f}{g}$

Functions that are continuous everywhere on their domain:

Polynomial, Rational, Radical, Trigonometric (sin, cos, tan, cot, sec, csc)

Intermediate Value Theorem (IVT)

If f(x) is continuous on the closed interval [a, b], and $f(a) \neq f(b)$, and k is any real number such that f(a) < k < f(b), then there exists at least one number c in [a, b] such that f(c) = k.

1D: Infinite Limits (1.4) Vertical Asymptotes ⇔ Infinite Limits

Vertical asymptotes occur on a function R(x) = f(x)/g(x) when $f(x) \neq 0$ and g(x) = 0.

Here is the technical definition of an infinite limit...

DEFINITION OF INFINITE LIMITS Let *f* be a function that is defined at every real number in some open interval containing *c* (except possibly at *c* itself). The statement $\lim_{x\to c} f(x) = \infty$ means that for each *M* > 0 there exists a $\delta > 0$ such that f(x) > M whenever $0 < |x - c| < \delta$ (see Figure 1.40). Similarly, the statement $\lim_{x\to c} f(x) = -\infty$ means that for each *N* < 0 there exists a $\delta > 0$ such that f(x) < N whenever $0 < |x - c| < \delta$. To define the **infinite limit from the left**, replace $0 < |x - c| < \delta$ by $c - \delta < x < c$. To define the **infinite limit from the left**, replace $0 < |x - c| < \delta$ by $c < x < c + \delta$.

Basically, for any large number M, there is a value of f(x) that is greater than M for some x that is very close to c (more specifically, for *all* values of x that are less than δ away from c).

Here's the most important part.

Properties of Infinite Limits. Let $\lim_{x \to c} f(x) = \infty$ and $\lim_{x \to c} g(x) = L$, then 1. $\lim_{x \to c} [f(x) \pm g(x)] = \infty$ 2. $\lim_{x \to c} f(x)g(x) = \infty$ if L > 0, $\lim_{x \to c} f(x)g(x) = -\infty$ if L < 03. $\lim_{x \to c} \frac{g(x)}{f(x)} = \infty$