2F.1 Exercises - Solutions

Name:

Derivatives of Logarithms

lculus

Find the Derivatives (from 5.1)

47.
$$f(x) = \ln(3x)$$

 $f'(x) = \ln(3x)$
 $f'(x) = \frac{1}{3x}(3) = \frac{1}{x}$
53. $y = \ln(t+1)^2$
 $y = \ln(t+1)^2 = 2\ln(t+1)$
 $y' = 2\frac{1}{t+1} = \frac{2}{t+1}$
57. $f(x) = \ln(\frac{x}{x^2+1})$
 $f(x) = \ln\frac{x}{x^2+1} = \ln x - \ln(x^2+1)$
 $f'(x) = \frac{1}{x} - \frac{2x}{x^2+1} = \frac{1-x^2}{x(x^2+1)}$
71. $y = \ln|\frac{\cos x}{\cos x - 1}|$
 $y = \ln|\frac{\cos x}{\cos x - 1}|$
 $= \ln|\cos x| - \ln|\cos x - 1|$
 $\frac{dy}{dx} = \frac{-\sin x}{\cos x} - \frac{-\sin x}{\cos x - 1}$

49.
$$g(x) = \ln x^2$$

 $g(x) = \ln x^2 = 2 \ln x$
 $g'(x) = \frac{2}{x}$
55. $y = \ln(x\sqrt{x^2 - 1})$
 $y = \ln\left[x\sqrt{x^2 - 1}\right] = \ln x + \frac{1}{2}\ln(x^2 - 1)$
 $\frac{dy}{dx} = \frac{1}{x} + \frac{1}{2}\left(\frac{2x}{x^2 - 1}\right) = \frac{2x^2 - 1}{x(x^2 - 1)}$
63. $y = \ln\sqrt{\frac{x + 1}{x - 1}} = \frac{1}{2}\left[\ln(x + 1) - \ln(x - 1)\right]$
 $\frac{dy}{dx} = \frac{1}{2}\left[\frac{1}{x + 1} - \frac{1}{x - 1}\right] = \frac{1}{1 - x^2}$
74. $y = \ln\sqrt{2 + \cos^2 x}$

88. $y^2 + \ln xy = 2$, (e, 1)

Use implicit differentiation to find an equation of the tangent line to the graph at the given point.

87.
$$x + y - 1 = \ln(x^2 + y^2)$$
, (1, 0)
(1, 0)
(1, 0)
 $1 + y' = \frac{2x + 2yy'}{x^2 + y^2}$
 $x^2 + y^2 + (x^2 + y^2)y' = 2x + 2yy'$
At (1, 0): $1 + y' = 2$
 $y' = 1$
Tangent line: $y = x - 1$

 $\sin x$

 $\cos x - 1$

 $= -\tan x +$

Find the Derivative (5.4)

39.
$$f(x) = e^{2x}$$

 $f(x) = e^{2x}$
 $f'(x) = 2e^{2x}$
41. $y = e^{\sqrt{x}}$
 $y = e^{\sqrt{x}}$
 $\frac{dy}{dx} = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$
45. $y = e^{x} \ln x$
 $y = e^{x} \ln x$
 $y = e^{x} \ln x$
 $y' = e^{x} \left(\frac{1}{x}\right) + e^{x} \ln x = e^{x} \left(\frac{1}{x} + \ln x\right)$
 $g'(t) = 3(e^{-t} + e^{t})^{2}(e^{t} - e^{-t})$

55.
$$y = \frac{e^{x} + 1}{e^{x} - 1}$$

 $y = \frac{e^{x} + 1}{e^{x} - 1}$
 $y' = \frac{(e^{x} - 1)e^{x} - (e^{x} + 1)e^{x}}{(e^{x} - 1)^{2}} \xrightarrow{4}_{2} \xrightarrow{4}_{2}$

Find the second derivative
73.
$$f(x) = (3 + 2x)e^{-3x}$$

 $f(x) = (3 + 2x)e^{-3x}$
 $f'(x) = (3 + 2x)(-3e^{-3x}) + 2e^{-3x} = (-7 - 6x)e^{-3x}$
 $f''(x) = (-7 - 6x)(-3e^{-3x}) - 6e^{-3x} = 3(6x + 5)e^{-3x}$

Other Bases! Find these $\overline{\det^2_{+}}$ ivatives using the rules for bases other than *e*. (5.5)

х

41.
$$f(x) = 4^{x}$$

 $f(x) = 4^{x}$
 $f'(x) = (\ln 4)^{x} 4^{x}$
 $f'(x) = (\ln 4)^{x} 4^{x}$

51.
$$y = \log_4(5x + 1)$$

 $y = \log_4(5x + 1)$
 $y' = \frac{1}{(5x + 1) \ln 4}(5)$
 $= \frac{5}{\ln 4(5x + 1)}$
55. $y = \log_5 \sqrt{x^2 - 1}$
 $y = \log_5 \sqrt{x^2 - 1} = \frac{1}{2} \log_5(x^2 - 1)$

х

$$\frac{dy}{dx} = \frac{1}{2} \cdot \frac{2x}{(x^2 - 1) \ln 5} = \frac{x}{(x^2 - 1) \ln 5}$$

43.
$$y = 5^{-4x}$$

 $y = 5^{-4x}$
 $y' = -4(\ln 5)5^{-4x}$
 $= \frac{-4 \ln 5}{625^x}$
53. $h(t) = \log_5(4 - t)^2$
 $h(t) = \log_5(4 - t)^2 = 2 \log_5(4 - t)$
 $h'(t) = 2 \frac{-1}{\ln(5)(4 - t)} = \frac{2}{(t - 4) \ln 5}$

57.
$$f(x) = \log_2 \frac{x^2}{x-1}$$

 $f(x) = \log_2 \frac{x^2}{x-1} = 2 \log_2 x - \log_2(x-1)$
 $f'(x) = \frac{2}{x \ln 2} - \frac{1}{(x-1) \ln 2} = \frac{x-2}{(\ln 2)x(x-1)}$

Use logarithmic differentiation to solve these (i.e. take the natural log first)

67.
$$y = x^{2/x}$$

 $y = x^{2/x}$
 $\ln y = \frac{2}{x} \ln x$
 $\frac{1}{y} \left(\frac{dy}{dx}\right) = \frac{2}{x} \left(\frac{1}{x}\right) + \ln x \left(-\frac{2}{x^2}\right) = \frac{2}{x^2} (1 - \ln x)$
 $\frac{dy}{dx} = \frac{2y}{x^2} (1 - \ln x) = 2x^{(2/x)-2} (1 - \ln x)$
 $69. $y = (x - 2)^{x+1}$
 $\ln y = (x - 2)^{x+1}$
 $\ln y = (x + 1) \ln(x - 2)$
 $\frac{1}{y} \left(\frac{dy}{dx}\right) = (x + 1) \left(\frac{1}{x - 2}\right) + \ln(x - 2)$
 $\frac{dy}{dx} = y \left[\frac{x + 1}{x - 2} + \ln(x - 2)\right]$
 $= (x - 2)^{x+1} \left[\frac{x + 1}{x - 2} + \ln(x - 2)\right]$$