

In this activity, you will investigate some useful properties of Isosceles and Equilateral Triangles.



 How do m∠B and m∠C compare? How do m∠E and m∠G compare?

From this observation, complete this theorem:

<u>Theorem 4-3</u> Isosceles Triangle Theorem : If two \_\_\_\_\_\_ of a triangle are congruent, then the \_\_\_\_\_\_ opposite those sides are congruent. (p. 211)

- 3. With the given information, how can you prove that  $\triangle ABD \cong \triangle ACD$ ?
- 4. Since  $\triangle ABD \cong \triangle ACD$ ,
  - a. how do the lengths of  $\overline{BD}$  and  $\overline{DC}$  compare?
  - b. how does the segment  $\overline{AD}$  relate to side  $\overline{BC}$ ?

Base off of these observations, complete this theorem

## Theorem 4-5 Isosceles Bisector Theorem: The angle bisector of the vertex

angle of an isosceles triangle is the \_\_\_\_\_\_ of the base. (p. 211)

- 5. On the line segment below, use your protractor to
  - a. draw a 30° angle at P and a 30° angle at Q to form a triangle. What type of triangle do you get?
  - b. Now draw a 50° angle at P and a 50° angle at Q to form a triangle (on top of the first). What type of triangle do you get?

*Observing the triangles you just drew, complete the theorem* 

Theorem 4-4 Converse of the Isosceles Triangle Theorem: If two \_\_\_\_

of a triangle are congruent, then the\_\_\_\_\_ opposite the angles are congruent. (p. 211)

0

**Corollary:** If a triangle is equiangular, then the triangle is equilateral. (p. 212)

6. Finally, check all of your theorems in your book using the given page numbers.