

Essential Question

How can you translate a figure in a coordinate plane?

Translate point P. State the coordinates of P'.

1. P(-4, 4); 2 units down, 2 units right

2. P(−3, −2); 3 units right, 3 units up

3. P(2, 2); 2 units down, 2 units right

Work with a partner.

a. Use dynamic geometry software to draw any triangle and label it $\triangle ABC$.

- **b.** Copy the triangle and *translate* (or slide) it to form a new figure, called an *image*, $\triangle A'B'C'$ (read as "triangle A prime, B prime, C prime").
- **c.** What is the relationship between the coordinates of the vertices of $\triangle ABC$ and those of $\triangle A'B'C'$?
- **d.** What do you observe about the side lengths and angle measures of the two triangles?

Work with a partner.

a. Translate your triangle either left or right, and up or down. Describe this change in the table below.

- b. Write down the coordinate rule for this transformation in the table.
- c. Write down the transformation vector in the table.
- d. Are its side lengths the same as those of $\triangle ABC$?
- e. Repeat this for 3 more transformations.

Lt/Rt distance	Up/Dn distance	Coordinate Rule			Vector
		$(x, y) \rightarrow ($,)	
		$(x, y) \rightarrow ($,)	
		$(x, y) \rightarrow ($,)	
		$(x, y) \rightarrow ($,)	

Vectors

The diagram shows a vector. The **initial point**, or starting point, of the vector is P, and the **terminal point**, or ending point, is Q. The vector is named \overrightarrow{PQ} , which is read as "vector PQ." The **horizontal component** of \overrightarrow{PQ} is 5, and the **vertical component** is 3. The **component form** of a vector combines the horizontal and vertical components. So, the component form of \overrightarrow{PQ} is $\langle 5, 3 \rangle$.

In the diagram, name the vector and write its component form.

G Core Concept

Translations

A **translation** moves every point of a figure the same distance in the same direction. More specifically, a translation *maps*, or moves, the points P and Q of a plane figure along a vector $\langle a, b \rangle$ to the points P' and Q', so that one of the following statements is true.

- PP' = QQ' and $\overline{PP'} \parallel \overline{QQ'}$, or
- PP' = QQ' and $\overline{PP'}$ and $\overline{QQ'}$ are collinear.

The vertices of $\triangle ABC$ are A(0, 3), B(2, 4), and C(1, 0). Translate $\triangle ABC$ using the vector (5, -1).

Write a rule for the translation of $\triangle ABC$ to $\triangle A'B'C'$.

1. Name the vector and write its component form.

2. The vertices of $\triangle LMN$ are L(2, 2), M(5, 3), and N(9, 1). Translate $\triangle LMN$ using the vector $\langle -2, 6 \rangle$.

3. In Example 3, write a rule to translate $\triangle A'B'C'$ back to $\triangle ABC$.

4. Graph $\triangle RST$ with vertices R(2, 2), S(5, 2), and T(3, 5) and its image after the translation $(x, y) \rightarrow (x + 1, y + 2)$.

Postulate 4.1 Translation Postulate

A translation is a rigid motion.

6 Theorem

Theorem 4.1 Composition Theorem

The composition of two (or more) rigid motions is a rigid motion.

Proof Ex. 35, p. 180

5. Graph \overline{TU} with endpoints T(1, 2) and U(4, 6) and its image after the composition.

Translation: $(x, y) \rightarrow (x - 2, y - 3)$

Translation: $(x, y) \rightarrow (x - 4, y + 5)$

6. Graph \overline{VW} with endpoints V(-6, -4) and W(-3, 1) and its image after the composition.

Translation: $(x, y) \rightarrow (x + 3, y + 1)$

Translation: $(x, y) \rightarrow (x - 6, y - 4)$