

5.3: Proving Triangle Congruence by SAS

Essential Question

What can you conclude about two triangles when you know that two pairs of corresponding sides and the corresponding included angles are congruent?

<u>Warmup</u>

Write a congruence statement for each pair of congruent figures.

Congruence Exploration

- 1. Go to your lesson 5.3 on your GP Geometry page
- 2. Open the SAS Triangle congruence Exploration

If two sides of a triangle and the angle between them are congruent... are the triangles congruent?

Congruence Exploration

- 1. Go to your lesson 5.3 on your GP Geometry page
- 2. Open the SSA?
 Triangle congruence
 Exploration

If two sides of a triangle and the angle NOT between them are congruent.... are the triangles congruent?

Theorem 5.5 Side-Angle-Side (SAS) Congruence Theorem

If two sides and the included angle of one triangle are congruent to two sides and the included angle of a second triangle, then the two triangles are congruent.

If $\overline{AB} \cong \overline{DE}$, $\angle A \cong \angle D$, and $\overline{AC} \cong \overline{DF}$, then $\triangle ABC \cong \triangle DEF$.

Proof p. 246

Example: Write a proof.

 $\mathbf{Given}_{\overline{BC}} \cong \overline{DA}, \ \overline{BC} \parallel \overline{AD}$

Prove $\triangle ABC \cong \triangle CDA$

In the diagram, \overline{QS} and \overline{RP} pass through the center M of the circle. What can you conclude about $\triangle MRS$ and $\triangle MPQ$?

In the diagram, *ABCD* is a square with four congruent sides and four right angles. *R*, *S*, *T*, and *U* are the midpoints of the sides of *ABCD*. Also, $\overline{RT \perp SU}$ and $\overline{SV} \cong \overline{VU}$.

R

- **1.** Prove that $\triangle SVR \cong \triangle UVR$.
- **2.** Prove that $\triangle BSR \cong \triangle DUT$.

You are making a canvas sign to hang on the triangular portion of the barn wall shown in the picture. You think you can use two identical triangular sheets of canvas. You know that $\overline{RP} \perp \overline{QS}$ and $\overline{PQ} \cong \overline{PS}$. Use the SAS Congruence Theorem to show that $\triangle PQR \cong \triangle PSR$.

