

Essential QuestionWhat conjectures can you make about a point on the perpendicular bisector of a segment and a point on the bisector of an angle?

Essential Question

Warmup

The diagram includes a pair of congruent triangles. Use the congruent triangles to find the value of x in the diagram.

1.

2.

Exploration 1: Perpendicular Bisectors

Work with a partner. Use dynamic geometry software.

a. Draw any segment and label it \overline{AB} . Construct the perpendicular bisector of \overline{AB} .

b. Label a point C that is on the perpendicular bisector of \overline{AB} but is not on \overline{AB} .

Exploration 1

c. Draw \overline{CA} and \overline{CB} and find their lengths. Then move point C to other locations on the perpendicular bisector and note the lengths of \overline{CA} and \overline{CB} .

d. Repeat parts (a)–(c) with other segments. Describe any relationship(s) you notice.

6-1-Notes.notebook

Exploration 2: Angle Bisectors

Work with a partner. Use dynamic geometry software.

- **a.** Draw two rays \overrightarrow{AB} and \overrightarrow{AC} to form $\angle BAC$. Construct the bisector of $\angle BAC$.
- **b.** Label a point D on the bisector of $\nearrow BAC$.
- **c.** Construct and find the lengths of the perpendicular segments from D to the sides of $\angle BAC$. Move point D along the angle bisector and note how the lengths change.
- **d.** Repeat parts (a)–(c) with other angles. Describe any relationship(s) you notice.

Exploration 2

Sample

Points

A(1, 1)

B(2, 2)

C(2, 1)

D(4, 2.24)

Rays

AB = -x + y = 0

AC = y = 1

Line

-0.38x + 0.92y = 0.54

6 Theorems

Theorem 6.1 Perpendicular Bisector Theorem

In a plane, if a point lies on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If \overrightarrow{CP} is the \perp bisector of \overline{AB} , then CA = CB.

Proof p. 302

Theorem 6.2 Converse of the Perpendicular Bisector Theorem

In a plane, if a point is equidistant from the endpoints of a segment, then it lies on the perpendicular bisector of the segment.

If DA = DB, then point D lies on the \perp bisector of \overline{AB} .

Proof Ex. 32, p. 308

Theorem

Find each measure.

a. RS

b. EG

c. AD

Is there enough information in the diagram to conclude that point N lies on the perpendicular bisector of \overline{KM} ?

Example 2

Use the diagram and the given information to find the indicated measure.

1. \overrightarrow{ZX} is the perpendicular bisector of \overrightarrow{WY} , and YZ = 13.75. Find WZ.

2. \overrightarrow{ZX} is the perpendicular bisector of \overrightarrow{WY} , WZ = 4n - 13, and YZ = n + 17. Find YZ.

3. Find WX when WZ = 20.5, WY = 14.8, and YZ = 20.5.

6 Theorems

Theorem 6.3 Angle Bisector Theorem

If a point lies on the bisector of an angle, then it is equidistant from the two sides of the angle.

If \overrightarrow{AD} bisects $\angle BAC$ and $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$, then $\overrightarrow{DB} = \overrightarrow{DC}$.

Proof Ex. 33(a), p. 308

Theorem 6.4 Converse of the Angle Bisector Theorem

If a point is in the interior of an angle and is equidistant from the two sides of the angle, then it lies on the bisector of the angle.

If $\overrightarrow{DB} \perp \overrightarrow{AB}$ and $\overrightarrow{DC} \perp \overrightarrow{AC}$ and $\overrightarrow{DB} = \overrightarrow{DC}$, then \overrightarrow{AD} bisects $\angle BAC$.

Proof Ex. 33(b), p. 308

Theorem

Find each measure.

a. m / GFJ

b. RS

Use the diagram and the given information to find the indicated measure.

4. \overrightarrow{BD} bisects $\angle ABC$, and DC = 6.9. Find DA.

5. \overrightarrow{BD} bisects $\angle ABC$, AD = 3z + 7, and CD = 2z + 11. Find CD.

6. Find $m \angle ABC$ when AD = 3.2, CD = 3.2, and $m \angle DBC = 39^{\circ}$.

Monitoring Progress 4-6

A soccer goalie's position relative to the ball and goalposts forms congruent angles, as shown. Will the goalie have to move farther to block a shot toward the right goalpost *R* or the left goalpost *L*?

