

7.1 Polygon Angles

Essential Question

What is the sum of the measures of the interior angles of a polygon?

<u>Exploration 1</u> Draw the five polygons and use Inductive reasoning to complete th table and answer the question:

How many diagonals can be drawn from one vertex of an n-gon?

Sides	Diagonals	Triangles	Total Degrees
3	-	-	-
4			
5			
6			
7			
 10			
20			
n			

6 Theorem

Theorem 7.1 Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a convex n-gon is $(n-2) \cdot 180^\circ$.

$$m \angle 1 + m \angle 2 + \cdots + m \angle n = (n-2) \cdot 180^{\circ}$$

Proof Ex. 42 (for pentagons), p. 365

Example: Find the sum of the measures of the interior angles of the figure.

1. The coin shown is in the shape of an 11-gon. Find the sum of the measures of the interior angles.

7-1-Notes.notebook February 06, 2017

Example:

The sum of the measures of the interior angles of a convex polygon is 900°. Classify the polygon by the number of sides.

You Try it:

The sum of the measures of the interior angles of a convex polygon is 1440°. Classify the polygon by the number of sides.

Corollary 7.1 Corollary to the Polygon Interior Angles Theorem

The sum of the measures of the interior angles of a quadrilateral is 360°.

Proof Ex. 43, p. 366

Example. Find the value of x in the diagram.

Exploration 2:

Compl	ete :	the	tabl	le:
· · · · · · · ·		• • • •		

Sides	Total Interior Degrees	Measure of	Measure of	Ext.
	Degrees	1 Interior <	∠ 1 Ext. Angle	<u>T</u> otal
4				
5				
6				

G Theorem

Theorem 7.2 Polygon Exterior Angles Theorem

The sum of the measures of the exterior angles of a convex polygon, one angle at each vertex, is 360°.

$$m\angle 1 + m\angle 2 + \cdots + m\angle n = 360^{\circ}$$

Proof Ex. 51, p. 366

Example: Find the value of x in the diagram.

Consider this:

A home plate for a baseball field is shown.

a. Is the polygon regular? Explain your reasoning.

b. Find the measures of \angle C and \angle E

-ol

The trampoline shown is shaped like a regular dodecagon.

a. Find the measure of each interior angle.

b. Find the measure of each exterior angle.

6. A convex hexagon has exterior angles with measures 34, 49°, 58°, 67°, and 75°. What is the measure of an exterior angle at the sixth vertex?

7. An interior angle and an adjacent exterior angle of a polygon form a linear pair. How can you use this fact as another method to find the measure of each exterior angle in Example 6?

• Writing Prompt: To find the sum of the measures of the interior angles of an n-gon ...