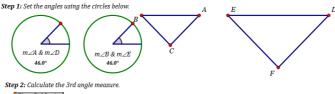


Essential Question

What can you conclude about two triangles when you know that two pairs of corresponding angles are congruent?


Exploration

Set two angles equal to each other and see if the sides are proportional.

Are the sides proportional if 2 angles are congruent?

Angle-Angle Similarity Explorer

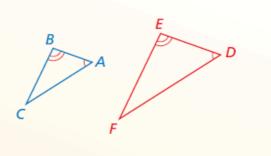
The Big Question: If all you know is that $\angle A \cong \angle D$ and $\angle B \cong \angle E$, can we know for sure that $\triangle ABC \sim \triangle DEF$?

Show 3rd Angles

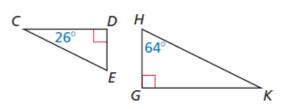
Step 3.: Calculate the length of the sides. Are they proportional?

Hide Measurements

AB = 4.00 DE = 7.00 AC = 2.88 DF = 5.04BC = 2.88 EF = 5.04

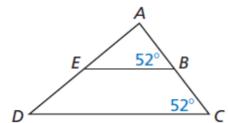

5 Theorem

Theorem 8.3 Angle-Angle (AA) Similarity Theorem

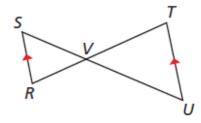

If two angles of one triangle are congruent to two angles of another triangle, then the two triangles are similar.

If $\angle A \cong \angle D$ and $\angle B \cong \angle E$, then $\triangle ABC \sim \triangle DEF$.

Proof p. 428

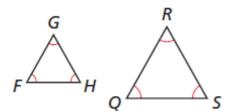


Determine whether the triangles are similar. If they are, write a similarity statement. Explain your reasoning.

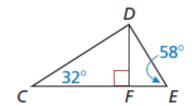


Show that the two triangles are similar.

a. △ABE~ △ACD



b. \triangle SVR $\sim \triangle$ UVT



Show that the triangles are similar. Write a similarity statement.

1. △FGHand △RQS



2. \triangle CDFand \triangle DEF

3. WHAT IF? Suppose that $\overline{SR} / \!\!\!/ \overline{TU}$ in Example 2 part (b). Could the triangles still be similar? Explain.

A flagpole casts a shadow that is 50 feet long. At the same time, a woman standing nearby who is 5 feet 4 inches tall casts a shadow that is 40 inches long. How tall is the flagpole to the nearest foot?

