

What are two ways to use corresponding sides of two triangles to determine that the triangles are similar?

Warmup

🔄 Theorem

Theorem 8.5 Side-Angle-Side (SAS) Similarity Theorem

м

If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides including these angles are proportional, then the triangles are similar.

If
$$\angle X \cong \angle M$$
 and $\frac{ZX}{PM} = \frac{XY}{MN}$, then $\triangle XYZ \sim \triangle MNP$.

Proof Ex. 33, p. 443

Example Can you prove that the triangles are similar?

Explain how to show that the indicated triangles are similar.

1.
$$\triangle$$
 SRT $\sim \triangle$ PNQ

2. $\triangle XZW \sim \triangle YZX$

Solution Theorem 8.4 Side-Side (SSS) Similarity Theorem If the corresponding side lengths of two triangles are proportional, then the triangles are similar. If $\frac{AB}{RS} = \frac{BC}{ST} = \frac{CA}{TR}$, then $\triangle ABC \sim \triangle RST$. Proof p. 437

Is either $\triangle DEF$ or $\triangle GHJ$ similar to $\triangle ABC$?

Find the value of *x* that makes $\triangle ABC \sim \triangle DEF$.

1. Which of the three triangles are similar? Write a similarity statement.

2. The shortest side of a triangle similar to $\triangle RST$ is 12 units long. Find the other side lengths of the triangle.