

9.6: Solving Right Triangles

Essential Question

When you know the lengths of the sides of a right triangle, how can you find the measures of the two acute angles?

Find the value of $\ x$. Then find the value of $\sin \ \theta$, $\cos \theta$, and $\tan \ \theta$ for the triangle.

Examples

Determine which of the two acute angles has a cosine of 0.5.

Determine which of the two acute angles has a tangent of 0.75.

Now do problems 1-3 on the Practice Assignment

Core Concept

Inverse Trigonometric Ratios

Let $\angle A$ be an acute angle.

Inverse Tangent If
$$\tan A = x$$
, then $\tan^{-1} x = m \angle A$. $\tan^{-1} \frac{BC}{AC} = m \angle A$

$$\tan^{-1}\frac{BC}{AC} = m \angle A$$

Inverse Sine If
$$\sin A = y$$
, then $\sin^{-1} y = m \angle A$. $\sin^{-1} \frac{BC}{AB} = m \angle A$

$$\sin^{-1}\frac{BC}{AB} = m\angle A$$

Inverse Cosine If
$$\cos A = z$$
, then $\cos^{-1} z = m \angle A$. $\cos^{-1} \frac{AC}{AB} = m \angle A$

$$\cos^{-1}\frac{AC}{AB} = m \angle A$$

*** The key is that

The inverse functions find _____

9-6-Notes.notebook

Example

Let $\angle A$, $\angle B$, and $\angle C$ be acute angles. Use a calculator to approximate the measures of $\angle A$, $\angle B$, and $\angle C$ to the nearest tenth of a degree.

a.
$$tan A = 0.75$$

b.
$$\sin B = 0.87$$

Example

Find the measure of all the angles in this triangle.

Now do problems 4-6 on the Practice Assignment

💪 Core Concept

Solving a Right Triangle

To solve a right triangle means to find all unknown side lengths and angle measures. You can solve a right triangle when you know either of the following.

- one side length and the measure of one acute angle

Solve the right triangle. Round decimal answers

to the nearest tenth.

9-6-Notes.notebook

Solve the right triangle. Round decimal answers to the nearest tenth.

Your school is building a raked stage The stage will be 30 feet long from front to back, with a total rise of 2 feet. You want the rake (angle of elevation) to be 5° or less for safety. Is the raked stage within your desired range?

Now finish the Practice
Assignment