

11.1: Circumference and Arc Length

Essential Question

How can you find the length of a circular arc?

Arc measure=central angle measure

Use the diagram to find the measure of the indicated angle and the circumference of the circle.

- 1. $m \angle BCD$
- $2.\ m \, \angle \, YMX$
- 3. $m \angle RPQ$

11-1-Notes.notebook

Work with a partner. Find the length of each red circular arc.

a. entire circle

b. one-fourth of a circle

c. one-third of a circle

d. five-eighths of a circle

Circumference of a Circle

The circumference C of a circle is $C = \pi d$ or $C = 2\pi r$, where d is the diameter of the circle and r is the radius of the circle.

Find each indicated measure.

- a. circumference of a circle with a radius of 9 centimeters
- b. radius of a circle with a circumference of 26 meters

Arc Length

In a circle, the ratio of the length of a given arc to the circumference is equal to the ratio of the measure of the arc to 360°.

$$\frac{\text{Arc length of } \widehat{AB}}{2\pi r} = \frac{\widehat{mAB}}{360^{\circ}}, \text{ or }$$

Arc length of
$$\widehat{AB} = \frac{m\widehat{AB}}{360^{\circ}} \cdot 2\pi r$$

Find each indicated measure.

a. arc length of \widehat{AB}

b. circumference of ⊙Z

 \widehat{mRS}

11-1-Notes.notebook

The dimensions of a car tire are shown. To the nearest foot, how far does the tire travel when it makes 15 revolutions?

The curves at the ends of the track shown are 180° arcs of circles. The radius of the arc for a runner on the red path shown is 36.8 meters. About how far does this runner travel to go once around the track? Round to the nearest tenth of a meter.

