

5C: Systems of Inequalities with 2 Vars. - *Solutions*

Graphing Systems of Inequalities

Steps for graphing inequalities:

- 1. Graph the equation represented by the inequality
- 2. Decide if it's dotted (< or >) or solid ($\leq or \ge$)
- 3. Test point(s) in the inequality to find the shaded region.

Systems of Inequalities: graph all inequalities and shade the overlapping regions, this represents the solutions to the system.

Example Solve the system of inequalities by graphing.

ExploreFind all the integers coordinates (x, y)that satisfy the equation $x^2 + y^2 = 5^2$.(Hint: think about the Pythagorean Theorem.)Graph these points.What shape would you get if you find all the
non-integer solutions as well?

The **equation of a circle** centered at the origin with radius r is : $x^2 + y^2 = r^2$ *Example* Solve the system of inequalities by graphing.

Linear Programming is the process of graphing a system of inequalities and finding the solution that maximizes an *objective function*. The inequalities are called the *constraints* and the overlapping region is called the *feasible region*.

The amazing result of linear programming is that the maximum or minimum value of the objective function occurs at one of the *vertex points* of the feasible region.

Example Find the maximum and minimum for the objective function with the given constraints.

Constraints:

 $2x + 4y \le 20$ $x + 3y \le 12$ $x \ge 0, y \ge 0$

Objective Function: f = 4x - 3y

 $f_{min} = -12 at (0,4)$ $f_{max} = 40 at (10,0)$

Exercises

Graph the system of inequalities and shade the solution.

1. 2x + 3y < 15 $-6x + 4y \ge 24$

$$2. \quad y \ge x^2 - 4$$
$$y \le -x^2 + 4$$

3.
$$y > (x - 2)^2$$

 $y \le \frac{1}{2}x + 2$

$$\begin{array}{ll} 4. \quad x^2 + y^2 \le 16 \\ y > x \end{array}$$

5.
$$x^{2} + y^{2} \le 9$$
$$y \le \frac{1}{2}x$$
$$y \ge -\frac{1}{2}x$$

Graph the inequalities to find the feasible region. Then find the maximum and the minimum of the objective function, if they exist, subject to the constraints.

6. Constraints:

y > 0 x > 0 $2x + 3y \le 12$ $5x + 2y \le 15$ Objective function: f = 10x + 5y

> Solution: Corners = $(0, 0), (0, 4), \left(\frac{2}{11}, \frac{30}{11}\right), (3, 0)$ $f_{min} = 0 \ at \ (0, 0), \qquad f_{max} = \frac{170}{11} \ at \ \left(\frac{2}{11}, \frac{30}{11}\right)$

aximum and the minimum or

7. Constraints:

 $5x + y \ge 60$ $x + 6y \ge 60$ $4x + 6y \ge 204$ $x \ge 0$ $y \ge 0$ x = 6

Objective function: f = 7x + 4y

Solution: Corners = (0, 60), (6, 30), (48, 2), (60, 0) $f_{min} = 162 at (6, 30)$, $f_{max} = none$

- 8. A manufacturer wants to maximize the profit for two products. He has provided you with the following information about his products:
 - Product A yields a profit of \$2.25 per unit, and product B yields a profit of \$2.00 per unit.
 - Demand information requires that the total number of units produced be no more than 3000 units.
 - Also, the number of units of product B produced must be greater than or equal to half the number of units of product A produced.

Define your variables, write an objective function to maximize profits, and write a system of constraints. Then find out how many of each unit should be produced to maximize the profit.

Solution: $x = units \ produced \ of \ Product \ A$ $y = units \ produced \ of \ product \ B$ $x + y \le 3000$ $y \ge \frac{1}{2}x$ $x \ge 0, y \ge 0$ Profit = P = 2.25x + 2.00yVertex Points=(0,3000), (2000, 1000), (0,0) $P_{max} = \$6500 \ at (2000, 1000)$