

Unit 8 Test- Part 2 (8C/8D) Practice Test - SOLUTIONS

Complete the problems below, show your work, and write your answer in the blank provided.

<u>Target 8D</u> I can graph and solve problems involving composition and combinations of trigonometric functions.

Calculators Allowed

- 1. Find the approximate value of each expression. Express your answer in degrees rounded to the nearest tenth.
 - **a.** $sin^{-1}(0.287) = 16.7^{\circ}$
 - **b.** $\arcsin(0.823) = 55.4^{\circ}$
- 2. Show the steps to find the *exact value* of these:
 - a) $sin(tan^{-1} 1)$.

Since
$$\tan^{-1} 1 = \frac{\pi}{4}$$

 $sin(\tan^{-1} 1) = sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$

b) $csc(sec^{-1}(2))$

Since
$$\sec^{-1}(2) = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$

 $\csc(\sec^{-1}(2)) = \csc\left(\frac{\pi}{3}\right) = \frac{1}{\sin\left(\frac{\pi}{3}\right)} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} = \frac{2\sqrt{3}}{3}$

- **3.** Find at algebraic expression equivalent to the given expression. (Hint: Form a right triangle.)
 - a) $\cos(\tan^{-1}x)$ Let $\tan^{-1}x = \theta$, we know, $\tan \theta = x$ So, opp = x, and adj = 1. From Pythagorean Theorem: $hyp = \sqrt{x^2 + 1}$ $\cos \theta = \frac{1}{\sqrt{x^2 + 1}}$

b)
$$\sin\left(\sec^{-1}\left(\frac{1}{x}\right)\right)$$

Let $\sec^{-1}\left(\frac{1}{x}\right) = \theta$, so $\sec\theta = \frac{1}{x}$
So, $adj = x$, $hyp = 1$
From Pythagorean Theorem, $opp = \sqrt{1 - x^2}$
 $\sin\theta = \frac{\sqrt{1 - x^2}}{1} = \sqrt{1 - x^2}$

Applications

4. Samantha measures the angle of elevation, θ , from where she is standing to a plane flying overhead. The plane remains at a constant height of 950 feet. Write an equation that relates θ to the horizontal distance, *x*, from Samantha's location to the plane.

<u>*Target 8C: I can graph and solve problems involving composition and combinations of trigonometric functions.*</u>

Calculators Allowed

- 5. Will the given function result in a sinusoidal function, and if it does, what is the period of the function? Explain how we can tell if the function is a sinusoid by just looking at the equation.
 - a) $y = 2\cos 2x + 3\sin 2x$

This will be a sinusoidal function because it is the sum of two sinusoids that have the same period.

- b) $y = 3 \tan 3x + 4 \sin 6x$ *This will not be sinusoidal because it is not a sum of sinusoids*
- c) $y = 4 \sin 4x 4 \cos 2x$ *This will not be sinusoidal because the periods are not the same.*
- 6. State the domain and range of the functions $y = (\cos x)^3$ $y = -|\sec x|$

Domain: $(-\infty, \infty)$ Domain: $x \neq \frac{\pi}{2} + \pi n$

Range:___[-1, 1]

Range: $(-\infty, -1]$

7. Sketch the graph the function $y = x^2 \sin x$ for $-2\pi \le x \le 2\pi$. State whether or not the function appears to be periodic. Explain.

8. What is the dampening factor of in the function $y = x^2 \sin x$? x^2

Explain how this factor affects the shape of the graph.

The function is bounded above by $y = x^2$ *and below by* $y = -x^2$ *.*