(
	Pre-Calculus	Name:
Τ,		

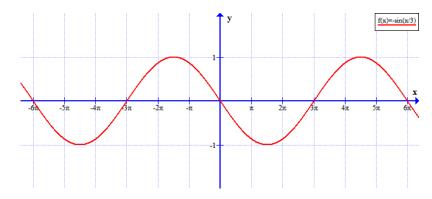
Date: Period:

Unit 8 Practice Test #1 Learning Targets: 8A and 8B

Complete the problems below, show your work, and write your answer in the blank provided.

This is a non-calculator test!

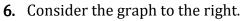
<u>Learning Target 8A</u>: I can graph and solve problems involving the sine and cosine functions, including their transformations.


1. Find the amplitude, period, and phase shift of $f(x) = -3\sin(2x - 9) + 3$.

$$f(x) = -3\sin\left(2\left(x - \frac{1}{2}\right)\right) + 3$$

amp = 3, period = $\frac{2\pi}{2} = \pi$, phase shift = $\frac{9}{2}$

2. Write an equation of the cosine function with amplitude 2 and period 4π .

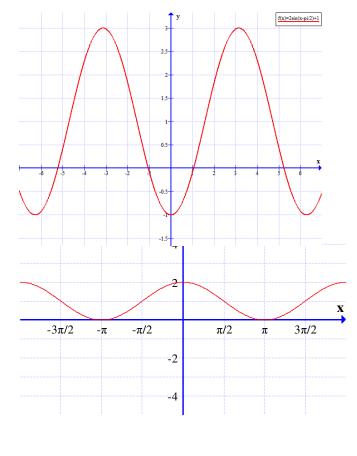

$$f(x) = 2\cos\left(\frac{1}{2}x\right)$$

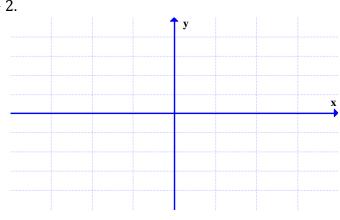
- **3.** Find the amplitude, period, phase shift, and vertical shift of $y = 3 \sin(2x \pi) + 2$.
 - $y = 3\sin\left(2\left(x \frac{\pi}{2}\right)\right) + 2$ amp = 3, period = π , phase shift = $\frac{\pi}{2}$, vert. shift = 2 (up)
- **4.** Graph two periods of $f(x) = -\sin(\frac{x}{3})$.

5. Graph two periods of $f(x) = 2\sin(x - \frac{\pi}{2}) + 1$.

amp = 2 $per = 2\pi$

a) Write a *cosine* function that would have the graph to the right.


 $y = \cos x + 1$


- b) Write a <u>sine</u> function that would have the graph to the right. $y = sin(x + \frac{\pi}{2}) + 1$
- 7. Consider the function $g(x) = 3\sin\left(x \frac{\pi}{2}\right) + 2$.
 - a) Describe the transformations of $y = \cos(x)$ to make this graph.

Amp=3, phase shift $=\frac{\pi}{2}$ right, Vertical shift = up 2

- b) Graph g(x) to the right.
- **8.** A signal buoy in the Chesapeake Bay bobs up and down with the height *h* of its transmitter (in feet) above sea level modeled by $h = a \sin bt + 5$. During a small squall its height varies from 1 ft to 9 ft and there are 3 sec from one 9-ft height to the next. What are the values of the constants *a* and *b*?

$$b=\frac{2\pi}{3}$$

9. A spring is mounted on a stand with a weight attached to it. We collect data over at .01 sec. intervals and record the height h (in meters) at time t as the ordered pair (t,h). Write the sinusoidal function for the spring if: Max (.4, 2.0) Min (.6, 0.2)

We will use a cosine function $h(t) = A \cos(B(x - C)) + D$ $A = \frac{1}{2}(2.0 - 0.2) = 0.9$ Period = 2(.6 - .4) = 2(.2) = .4 $B = \frac{2\pi}{per} = \frac{2\pi}{.4} = \frac{20\pi}{4} = 5\pi$ Ammon at D

Phase Shift = C = 0.4 because of maximum

$$D = \frac{1}{2}(2.0 + 0.2) = 1.1$$

$$h(t) = 0.9 \cos(5\pi(x-0.4)) + 1.1$$

<u>Learning Target 8B</u>: I can graph and solve problems involving tangent, secant, cosecant, and cotangent functions, including their transformations.

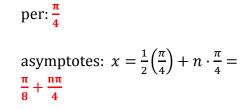
10. What are the two equations for finding the vertical asymptotes of a tangent function?

$$x = \left(\frac{\pi}{2b}\right) + n\left(\frac{\pi}{b}\right), \quad or \ x = \frac{(2n+1)\pi}{2b}, \quad n \in \mathbb{Z}$$

11. What changes in the tangent pattern when the amplitude is negative?

Vertical flip (i.e. curves go down to right)

12. Find the vertical asymptotes of $y = 3 \tan x$.

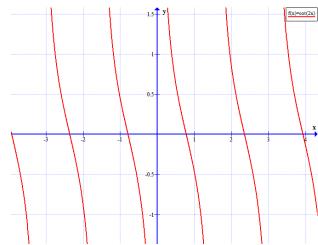

$$\mathbf{x} = \frac{\pi}{2} + \mathbf{n}\pi$$

13. Write an equation of the tangent function with amplitude 2, vertical shift 1, and period 4.

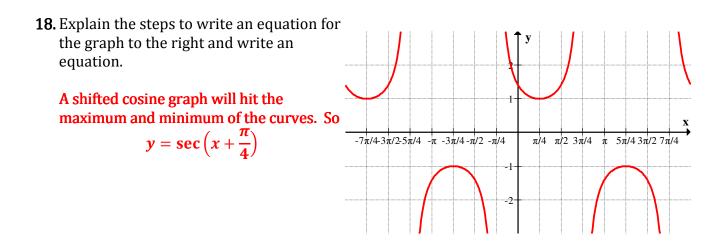
$$y = 2\tan\left(\frac{\pi}{4}x\right) + 1$$

14. Graph
$$y = \csc(x + \frac{\pi}{2})$$
.

15. Consider the function $y = -\tan 4x$. a) Find the period and asymptotes



b) Graph the function


16. Find the period of $y = \cot 2x$ and graph the function (Be sure to indicate your scales.)

17. What other trigonometric function has the same set of asymptotes as the graph of $y = \cot x$? Explain your reasoning.

Since cotangent has asymptotes when sine is zero, and cosecant has asymptotes when sine is zero, cosecant and cotangent have the same asymptotes.

