3A: Solving Quadratic Equations

When solving quadratic equations, we have several methods that we can use depending on the terms of the quadratic expression. Below is a summary of these methods with an example.

Standard Form of a quadratic equation: $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}=\mathbf{0}$ for integers $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$.

Method 1: Square Root Method

$$
a x^{2}+c=0
$$

Example: \quad Solve $4 x^{2}-27=0$

$$
\begin{array}{cl}
4 x^{2}-27=0 & \\
4 x^{2}=27 & \\
x^{2}=\frac{27}{4} & \text { Isolate the } x^{2} \\
x= \pm \sqrt{\frac{27}{4}} & \text { Square Root } \\
x= \pm \frac{3 \sqrt{3}}{2} & \text { Simplify }
\end{array}
$$

Method 2: Factoring

The factoring method employs the zero-product rule which states:
"If $p q=0$, then either $p=0$, or $q=0$."
When $\boldsymbol{a}=1: \quad x^{2}+b x+c=0$
Strategy: Find two numbers m and n such that

$$
m+n=b, \quad \text { and } \quad m \cdot n=0
$$

then we write

$$
x^{2}+b x+c=(x+m)(x+n)=0
$$

and use the zero product rule.
Example: Solve $x^{2}-2 x-7=8$

$$
\begin{array}{cl}
x^{2}-2 x-7=8 & \\
x^{2}-2 x-15=0 & \text { Make one side equal to } 0 \\
(x-5)(x+3)=0 & \text { Factor the quadratic expression } \\
x-5=0, \quad \text { or } \quad x+3=0 & \text { Set each factor equal to zero. } \\
x=5, \quad \text { or } \quad x=-3 & \text { Solve each sub-equation to get solutions. }
\end{array}
$$

When $\neq 1$, use the "ac" method: $\quad a x^{2}+b x+c=0$
Example: Solve $2 x^{2}+x-15=0$

$$
\begin{array}{ll}
2 x^{2}+x-15=0 & \text { First make sure that the equation is equal to } 0 . \\
& \text { Compute the value of } a c \\
a c=2(-15)=-30
\end{array}
$$

Find two numbers that have a product of $a c=-30$ and a sum

$$
2 x^{2}+6 x-5 x-15=0
$$

$$
\text { of } b=1 \text {. They are }-5 \text { and } 6 .
$$

Split the $b x$ term into a sum with these coefficients.

$$
\begin{gathered}
2 x(x+3)-5(x+3)=0 \\
(2 x-5)(x+3)=0 \\
2 x-5=0, \quad \text { or } x+3=0 \\
x=\frac{5}{2}, \quad \text { or } \quad x=-3
\end{gathered}
$$

Factor the expression by grouping.
Set both factors equal to zero.
Solve the sub-equations.

Square Trinomials: $a^{2} x^{2}+2 a b x+b^{2}=c$
Example: \quad Solve $9 x^{2}+30 x+25=40$

$$
\begin{array}{cl}
9 x^{2}+30 x+25=40 & \begin{array}{l}
\text { First check to see if the left side is a quadratic trinomial } \\
\text { in the form } a^{2} x^{2}+2 a b x+b^{2} \ldots \text { This one is! }
\end{array} \\
\begin{array}{ll}
(3 x+5)^{2}=40 & \text { Factor the expression. } \\
3 x+5= \pm \sqrt{40} & \text { Square root (don't forget the } \pm \text { roots) } \\
3 x= \pm \sqrt{40}-5 & \text { Isolate the } x \text { variable to solve. } \\
x=\frac{ \pm 2 \sqrt{10}-5}{3} &
\end{array}
\end{array}
$$

Method 3: Completing the Square

Use for any quadratic equation in standard from $a x^{2}+b x+c=0$.
Example: \quad Solve $3 x^{2}+24 x-21=0$

$$
\begin{array}{cl}
3 x^{2}+24 x-21=0 & \\
3 x^{2}+24 x=21 & \text { Isolate constant term } c \\
x^{2}+8 x=7 & \text { Divide by } a=3 \\
x^{2}+8 x+16=23 & \text { Add }(b / 2)^{2} \text { to both sid } \\
(x+4)^{2}=23 & \text { Factor the perfect squar } \\
x+4= \pm \sqrt{23} & \text { Square root both sides } \\
x= \pm \sqrt{23}-4 & \text { Subtract } 4 \text { to solve. }
\end{array}
$$

Method 4: The Quadratic Formula

Use for any quadratic in standard form $a x^{2}+b x+c=0$.
The solutions to $a x^{2}+b x+c=0$ can be found using the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Example: \quad Solve $2 x^{2}+4 x-5=6$

$$
\begin{aligned}
& \begin{array}{l}
2 x^{2}+4 x-5=6 \\
2 x^{2}+4 x-11=0 \\
x= \\
-(4) \pm \sqrt{(4)^{2}-4(2)(-11)} \\
2(2)
\end{array} \\
x=\frac{-4 \pm \sqrt{16+88}}{4} & \text { Set equation equal to } 0 \\
x=\frac{-4 \pm \sqrt{104}}{4} & \text { Use coefficients } a=2, b=4, c=-11 \text { for the formula. } \\
x=\frac{-4 \pm 2 \sqrt{26}}{4} & \text { Simplify carefuly! } \\
x=\frac{-2 \pm \sqrt{26}}{2} &
\end{aligned}
$$

Complex Solutions

In the set of real numbers the square root of all real numbers is a real number. However, the square root of a negative real number is undefined. This is because when we square any real number, we get a non-negative number.

So, we have to define a new type of number called an imaginary number. So, we define

$$
\sqrt{-1}=i
$$

to be our imaginary unit. An imaginary number is any multiple of i.

For example:

Write the $\sqrt{-4}$ and $\sqrt{-8}$ using the imaginary unit i.

$$
\begin{gathered}
\sqrt{-4}=\sqrt{4} \cdot \sqrt{-1}=2 i \\
\sqrt{-8}=\sqrt{4} \cdot \sqrt{-1} \cdot \sqrt{2}=2 \cdot i \cdot \sqrt{2}=2 i \sqrt{2}
\end{gathered}
$$

A complex number has two parts: a real part and an imaginary part of the form

$$
\underset{\text { realpart }}{a}+\underset{\text { imag. part }}{b i}
$$

When solving quadratic equations, we sometimes end up with no real solutions but we have imaginary solutions.
Example. Use the square root method to solve $4 x^{2}+20=10$

$$
\begin{aligned}
& 4 x^{2}+20=10 \\
& x^{2}=\frac{-10}{4} \\
& x=\sqrt{\frac{-10}{4}}=\frac{\sqrt{-10}}{2}=\frac{\sqrt{10}}{2} \cdot \sqrt{-1}=\frac{\sqrt{10}}{2} i
\end{aligned}
$$

Solve using the square root method

1. $3(x+3)^{2}-5=31$
2. $2 x^{2}+9=5$
3. $(x-4)^{2}=-9$

Solve by Factoring

1. $x^{2}+15 x-34=0$
2. $x^{2}-12 x=-35$
3. $4 x^{2}+12 x+9=0$
4. $2 x^{2}+5 x+3=0$
5. Try this: Factor the left side before setting equal to 0 .
$9 x^{2}-24 x+16=-5$

Solve by completing the square
6. $2 x^{2}+8 x-5=7$
7. $x^{2}+6 x=-25$
8. $4 x^{2}+8 x+20=0$

Solve using the quadratic formula
9. $4 x^{2}-3 x-5=2$
10. $5 x^{2}-4 x=5$
11. $3 x^{2}+x+1=0$
12. $-5 x^{2}+6 x+3=5$

