Pre-Calculus Name: Date: Period: 2A: Solving Quadratic Equations

When solving quadratic equations, we have several methods that we can use depending on the terms of the quadratic expression. Below is a summary of these methods with an example.

Standard Form of a quadratic equation: $ax^2 + bx + c = 0$ for integers a, b, c.

Method 1: Square Root Method

$$ax^2 + c = 0$$

Example: Solve $4x^2 - 27 = 0$

$4x^2 - 27 = 0$ $4x^2 = 27$	
$x^2 = \frac{27}{4}$	Isolate the x^2
$x = \pm \sqrt{\frac{27}{4}}$	Square Root
$x = \pm \frac{3\sqrt{3}}{2}$	Simplify

Method 2: Factoring

The factoring method employs the <u>zero-product rule</u> which states: "If pq = 0, then either p = 0, or q = 0."

<u>*When a* = 1:</u> $x^2 + bx + c = 0$

Strategy: Find two numbers *m* and *n* such that

m+n=b, and $m\cdot n=0$

then we write

$$x^{2} + bx + c = (x + m)(x + n) = 0$$

and use the zero product rule.

Example: Solve
$$x^2 - 2x - 7 = 8$$

$x^{2} - $	2x - 7 = 8	
$x^2 - 2$	2x - 15 = 0	Make one side equal to 0
(x - 5))(x+3)=0	Factor the quadratic expression
x - 5 = 0,	<i>or</i> $x + 3 = 0$	Set each factor equal to zero.
<i>x</i> = 5,	or $x = -3$	Solve each sub-equation to get solutions.

When \neq **1**, *use the "ac" method:* $ax^2 + bx + c = 0$

0
First make sure that the equation is equal to 0.
Compute the value of <i>ac</i>
ac = 2(-15) = -30
Find two numbers that have a product of $ac = -30$ and a sum
of $b = 1$. They are -5 and 6.
Split the <i>bx</i> term into a sum with these coefficients.
Factor the expression by <i>grouping</i>
ractor the expression by grouping.
Set both factors equal to zero.
Solve the sub-equations.

<u>Square Trinomials:</u> $a^2x^2 + 2abx + b^2 = c$

Example: Solve $9x^2 + 30x + 25 = 40$

$9x^2 + 30x + 25 = 40$	First check to see if the left side is a quadratic trinomial in the form $a^2x^2 + 2abx + b^2$ This one is!
$(3x+5)^2 = 40$	Factor the expression.
$3x + 5 = \pm \sqrt{40}$	Square root (don't forget the \pm roots)
$3x = \pm \sqrt{40} - 5$	Isolate the <i>x</i> variable to solve.
$x = \frac{\pm 2\sqrt{10} - 5}{3}$	

Method 3: Completing the Square

Use for any quadratic equation in standard from $ax^2 + bx + c = 0$.

<i>Example</i> : Solve $3x^2 + 24x - 21 = 0$	
$3x^2 + 24x - 21 = 0$	
$3x^2 + 24x = 21$	Isolate constant term <i>c</i>
$x^2 + 8x = 7$	Divide by $a = 3$
$x^2 + 8x + 16 = 23$	Add $(b/2)^2$ to both sides, where <i>b</i> is the coefficient on <i>x</i>
$(x+4)^2 = 23$	Factor the perfect square trinomial
$x + 4 = \pm \sqrt{23}$	Square root both sides
$x = \pm \sqrt{23} - 4$	Subtract 4 to solve.

Method 4: The Quadratic Formula

Use for any quadratic in standard form $ax^2 + bx + c = 0$.

The solutions to $ax^2 + bx + c = 0$ can be found using the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example: Solve $2x^2 + 4x - 5 = 6$ $2x^2 + 4x - 5 = 6$ $2x^2 + 4x - 11 = 0$ Set equation equal to 0 $x = \frac{-(4) \pm \sqrt{(4)^2 - 4(2)(-11)}}{2(2)}$. Use coefficients a = 2, b = 4, c = -11 for the formula. $x = \frac{-4 \pm \sqrt{16 + 88}}{4}$ $x = \frac{-4 \pm \sqrt{104}}{4}$ $x = \frac{-4 \pm 2\sqrt{26}}{4}$ Simplify carefuly! $x = \frac{-2 \pm \sqrt{26}}{2}$

Complex Solutions

In the set of real numbers the square root of all real numbers is a real number. However, the square root of a negative real number is undefined. This is because when we square any real number, we get a non-negative number.

So, we have to define a new type of number called an *imaginary number*. So, we define

$$\sqrt{-1} = i$$

to be our imaginary unit. An *imaginary number* is any multiple of *i*. *For example:*

Write the $\sqrt{-4}$ and $\sqrt{-8}$ using the imaginary unit *i*.

$$\sqrt{-4} = \sqrt{4} \cdot \sqrt{-1} = 2i$$
$$\sqrt{-8} = \sqrt{4} \cdot \sqrt{-1} \cdot \sqrt{2} = 2 \cdot i \cdot \sqrt{2} = 2i\sqrt{2}$$

A *complex number* has two parts: a real part and an imaginary part of the form

When solving quadratic equations, we sometimes end up with no real solutions but we have imaginary solutions.

Example. Use the square root method to solve $4x^2 + 20 = 10$

$$4x^{2} + 20 = 10$$

$$x^{2} = \frac{-10}{4}$$

$$x = \sqrt{\frac{-10}{4}} = \frac{\sqrt{-10}}{2} = \frac{\sqrt{10}}{2} \cdot \sqrt{-1} = \frac{\sqrt{10}}{2}i$$

Name: Date: Period:

Assignment 2A

Solve using the square root method

- 1. $3(x+3)^2 5 = 31$
- 2. $2x^2 + 9 = 5$
- 3. $(x-4)^2 = -9$

Solve by Factoring

- 1. $x^2 + 15x 34 = 0$
- 2. $x^2 12x = -35$
- 3. $4x^2 + 12x + 9 = 0$
- 4. $2x^2 + 5x + 3 = 0$
- 5. Try this: Factor the left side *before* setting equal to 0. 9 $x^2 - 24 x + 16 = -5$

Solve by completing the square

- 6. $2x^2 + 8x 5 = 7$
- 7. $x^2 + 6x = -25$
- 8. $4x^2 + 8x + 20 = 0$

Solve using the quadratic formula

9. $4x^2 - 3x - 5 = 2$

10. $5x^2 - 4x = 5$

11. $3x^2 + x + 1 = 0$

12. $-5x^2 + 6x + 3 = 5$