

Name:

Period:

Assignment 2C

For each polynomial function below, write in standard form, state the degree, find the y-intercept, find the number of *possible* zeros and turning points (a.k.a. extrema), and describe the end behavior *without graphing*. Then verify the end behavior with your graphing calculator and find the *actual* number of zeros and turning points of the function. *Sketch* a rough picture of your graph.

Write your answers as a complete thought (the first problem is modeled for you).

1. $y = 2x^3 - 2 + 3x^4 - 3x^2$

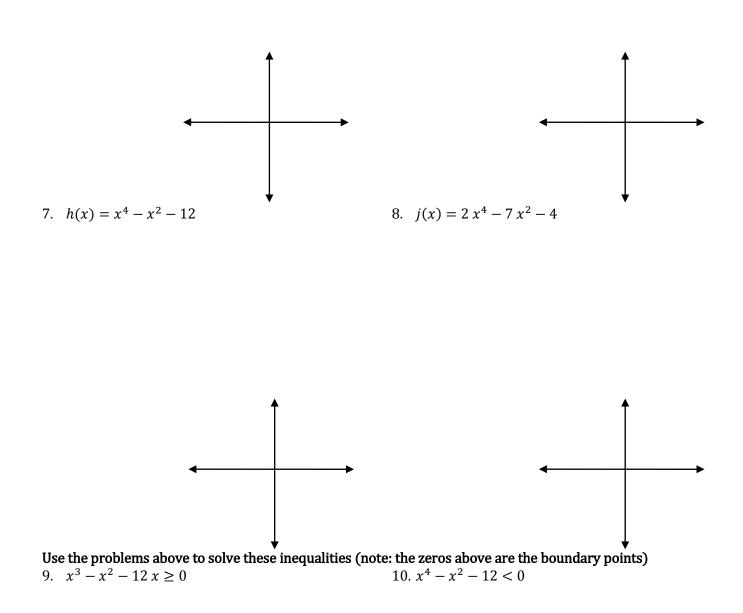
2. $y = -x^5 - 3x^6 - 4x^4 + 3x^5 + 10$

This polynomial has degree_____ with a

y-intercept of _____. There are _____

possible zeros and _____ possible turning points.

As $x \to -\infty$, $y \to _$. As $x \to \infty$, $y \to _$.


This function actually has _____ zeros

and ______ turning points.

3. $y = 2 + x^4 - 10 x^2 - 5 x - 3 x^3$

4. $y = 1 + 4x^3 - x^4 - 6x$

Use factoring to find the zeros of the functions (list their coordinates), state the multiplicity of each zero, then <u>sketch</u> a graph of each function with approximate scale. Check with your calculator. 5. $f(x) = x^3 - x^2 - 12 x$ 6. $g(x) = 3 x^3 + 6 x^2 + 3 x$

