

3D: Rational Functions and Asymptotes

A rational function is one of the form

$$f(x) = \frac{A(x)}{B(x)} = \frac{a_n x^n + \dots}{b_m x^m + \dots}$$

where A(x) and B(x) are polynomials. We will consider A(x) as n^{th} degree and B(x) as m^{th} degree.

Domain restrictions and vertical asymptotes

We have previously learned that we must carefully consider the denominator when determining the domain of a rational function. We will continue with this idea and use what we have learned about factoring to find these domain restrictions and other important characteristics of the graph of a rational function.

Function	Factored Form and Simplified Form	Domain Restrictions	Vertical Asymptotes (a) and Removable Discontinuities	Divide (write as sum of a polynomial and remainder fraction)	Limits as $x \to \pm \infty$, as $x \to a^+$ as $x \to a^-$	Horizontal Asymptotes
$a(x) = \frac{x+3}{x^2+x-6}$	$=\frac{x+3}{(x+3)(x-2)} = \frac{1}{x-2}$	$\begin{array}{l} x \neq -3 \\ x \neq 2 \end{array}$	Vert. Asym.: x = 2 Hole: x = -3	Cannot be Divided Because numerator degree is less than denominator degree	$\frac{Since num.}{degree <}$ $\frac{denom.}{Degree:}$ $As x \to -\infty,$ $y \to 0$ $As x \to \infty$ $y \to 0$ $Consider$ $Vert.$ $asymptote:$ $As x \to 2^{+}$ $y \to \infty$ $As x \to 2^{-}$ $y \to -\infty$	y = 0 Since infinite limits go to 0 (No Zeros)

Function	Factored Form	Domain Restrictions	Vertical Asymptotes (a) and Removable Discontinuities	Divide (write as sum of a polynomial and remainder fraction)	Limits as $x \to \pm \infty$, as $x \to a^+$ as $x \to a^-$	Horizontal Asymptotes
$b(x) = \frac{2x^2 + x - 6}{x^2 + x - 2}$	$=\frac{(x+2)(2x-3)}{(x+2)(x-1)}$ $=\frac{(2x-3)}{(x-1)}$	$\begin{array}{l} x \neq -2 \\ x \neq 1 \end{array}$	Vert. Asym.: x = 1 Hole: x = -2	Use simplified version and long division: $\frac{(2x-3)}{(x-1)}$ $= 2 + \frac{-1}{x-1}$ (Use this to find limits and horizontal asymptote)	As $x \to -\infty$, $y \to 2$ As $x \to \infty$ $y \to 2$ <u>Consider</u> <u>Vert.</u> As $x \to 1^-$ $y \to \infty$ As $x \to 1^+$ $y \to -\infty$	From Limits: y = 2 (by numerator: zero at $x = \frac{3}{2}$)
$c(x) = \frac{x^2 - x - 6}{x^2 + 2x - 3}$	$=\frac{(x+2)(x-3)}{(x+3)(x-1)}$ Can't be simplified	$x \neq -3$ $x \neq 1$	Vert. Asym.: x = -3 and x = 1 <i>No holes</i> <i>because no</i> <i>factors cancel</i>	Use simplified version and long division: $\frac{x^2 - x - 6}{x^2 + 2x - 3} =$ $1 + \frac{-3x - 3}{x^2 + 2x - 3}$ (Use this to find limits and horizontal asymptote)	As $x \to -\infty$, $y \to 1$ As $x \to \infty$ $y \to 1$ <u>Consider</u> <u>Vert.</u> <u>asymptote:</u> As $x \to -3^{-}$ $y \to -\infty$ As $x \to -3^{+}$ $y \to \infty$ As $x \to 1^{-}$ $y \to \infty$ As $x \to 1^{+}$ $y \to -\infty$	From Limits: y = 1 <i>(by</i> <i>numerator:</i> <i>zero at</i> x = -2,3)

Function	Factored Form	Domain Restrictions	Vertical Asymptotes (<i>a</i>) and Removable Discontinuities	Divide (write as sum of a polynomial and remainder fraction)	Limits as $x \to \pm \infty$, as $x \to a^+$ as $x \to a^-$	Horizontal Asymptotes
$d(x) = \frac{x^2 - 4}{x^2 + 1}$	$\frac{(x+2)(x-2)}{x^2+1}$	<i>No Domain Restrictions</i>	<i>None because there are no domain restrictions</i>	Use simplified version and long division: $1 + \frac{-5}{x^2 + 1}$ (Use this to find limits and horizontal asymptote)	As $x \to -\infty$, $y \to 1$ As $x \to \infty$ $y \to 1$ No vertical asymptotes, so there's no other limits to consider	From Limits: y = 1 <i>(by</i> <i>numerator:</i> <i>zero at</i> $x = \pm 2$; and <i>y-intercept</i> at(0, -4))
$y = \frac{x^3 + 4x^2 + 3x}{x+1}$	$y = \frac{x(x+1)(x+3)}{x+1}$	<i>x</i> ≠ 1	Hole: x = 1	It simplifies to $x^2 + 3x$, so there is no long division needed.	$As x \to -\infty, y \to \infty As x \to \infty y \to \infty$	No Horizontal Asymptote.

<u>Graphs</u>

