

A rational function is one of the form

$$
f(x)=\frac{A(x)}{B(x)}=\frac{a_{n} x^{n}+\ldots}{b_{m} x^{m}+\ldots}
$$

where $A(x)$ and $B(x)$ are polynomials.
We will consider $A(x)$ as $n^{\text {th }}$ degree and $B(x)$ as $m^{\text {th }}$ degree.

Domain restrictions and vertical asymptotes

We have previously learned that we must carefully consider the denominator when determining the domain of a rational function. We will continue with this idea and use what we have learned about factoring to find these domain restrictions and other important characteristics of the graph of a rational function.

Function	Factored Form and Simplified Form	Domain Restrictions	Vertical Asymptotes (a) and Removable Discontinuities	Divide (write as sum of a polynomial and remainder fraction)	Limits as $x \rightarrow \pm \infty$ as $x \rightarrow a^{+}$ as $x \rightarrow a^{-}$	Horizontal Asymptotes
$a(x)=\frac{x+3}{x^{2}+x-6}$	$\begin{aligned} & =\frac{x+3}{(x+3)(x-2)} \\ & =\frac{1}{x-2} \end{aligned}$	$\begin{aligned} & x \neq-3 \\ & x \neq 2 \end{aligned}$	Vert. Asym.: $x=2$ Hole: $x=-3$	Cannot be Divided Because numerator degree is less than denominator degree	Since num. degree \leq denom. Degree: As $x \rightarrow-\infty$, $y \rightarrow 0$ As $x \rightarrow \infty$ $y \rightarrow 0$ Consider Vert. asymptote: As $x \rightarrow 2^{+}$ $y \rightarrow \infty$ As $x \rightarrow 2^{-}$ $y \rightarrow-\infty$	$y=0$ Since infinite limits go to 0 (No Zeros)

Function	Factored Form	Domain Restrictions	Vertical Asymptotes (a) and Removable Discontinuities	Divide (write as sum of a polynomial and remainder fraction)	$\begin{aligned} & \text { Limits } \\ & \text { as } x \rightarrow \pm \infty, \\ & \text { as } x \rightarrow a^{+} \\ & \text {as } x \rightarrow a^{-} \end{aligned}$	Horizontal Asymptotes
$b(x)=\frac{2 x^{2}+x-6}{x^{2}+x-2}$	$\begin{aligned} & =\frac{(x+2)(2 x-3)}{(x+2)(x-1)} \\ & =\frac{(2 x-3)}{(x-1)} \end{aligned}$	$\begin{aligned} & x \neq-2 \\ & x \neq 1 \end{aligned}$	Vert. Asym.: $x=1$ Hole: $x=-2$	Use simplified version and long division: $\begin{aligned} & \frac{(2 x-3)}{(x-1)} \\ = & 2+\frac{-1}{x-1} \end{aligned}$ (Use this to find limits and horizontal asymptote)	As $x \rightarrow-\infty$, $y \rightarrow 2$ As $x \rightarrow \infty$ $y \rightarrow 2$ Consider Vert. asymptote: As $x \rightarrow 1^{-}$ $y \rightarrow \infty$ As $x \rightarrow 1^{+}$ $y \rightarrow-\infty$	From Limits: $y=2$ (by numerator: zero at $x=\frac{3}{2}$)
$c(x)=\frac{x^{2}-x-6}{x^{2}+2 x-3}$	$=\frac{(x+2)(x-3)}{(x+3)(x-1)}$ Can't be simplified	$\begin{aligned} & x \neq-3 \\ & x \neq 1 \end{aligned}$	Vert. Asym.: $x=-3$ and $x=1$ No holes because no factors cancel	Use simplified version and long division: $\begin{aligned} & \frac{x^{2}-x-6}{x^{2}+2 x-3}= \\ & 1+\frac{-3 x-3}{x^{2}+2 x-3} \end{aligned}$ (Use this to find limits and horizontal asymptote)	As $x \rightarrow-\infty$, $y \rightarrow 1$ As $x \rightarrow \infty$ $y \rightarrow 1$ Consider Vert. asymptote: As $x \rightarrow-3^{-}$ $y \rightarrow-\infty$ As $x \rightarrow-3^{+}$ $y \rightarrow \infty$ As $x \rightarrow 1^{-}$ $y \rightarrow \infty$ As $x \rightarrow 1^{+}$ $y \rightarrow-\infty$	From Limits: $y=1$ (by numerator: zero at $x=-2,3)$

Function	Factored Form	Domain Restrictions	Vertical Asymptotes (a) and Removable Discontinuities	Divide (write as sum of a polynomial and remainder fraction)	Limits as $x \rightarrow \pm \infty$, as $x \rightarrow a^{+}$ as $x \rightarrow a^{-}$	Horizontal Asymptotes
$d(x)=\frac{x^{2}-4}{x^{2}+1}$	$\frac{(x+2)(x-2)}{x^{2}+1}$	No Domain Restrictions	None because there are no domain restrictions	Use simplified version and long division: $1+\frac{-5}{x^{2}+1}$ (Use this to find limits and horizontal asymptote)	$\begin{gathered} \text { As } x \rightarrow-\infty, \\ y \rightarrow 1 \\ \text { As } x \rightarrow \infty \\ y \rightarrow 1 \end{gathered}$ No vertical asymptotes, so there's no other limits to consider	From Limits: $y=1$ (by numerator: zero at $x= \pm 2$;and y-intercept at $(0,-4)$)
$y=\frac{x^{3}+4 x^{2}+3 x}{x+1}$	$y=\frac{x(x+1)(x+3)}{x+1}$	$x \neq 1$	Hole: $x=1$	It simplifies to $x^{2}+3 x$, so there is no long division needed.	$\begin{gathered} \text { As } x \rightarrow-\infty, \\ y \rightarrow \infty \\ \text { As } x \rightarrow \infty \\ y \rightarrow \infty \end{gathered}$	No Horizontal Asymptote.

Graphs

$$
a(x)=\frac{x+3}{x^{2}+x-6} \quad b(x)=\frac{2 x^{2}+x-6}{x^{2}+x-2} \quad c(x)=\frac{x^{2}-x-6}{x^{2}+2 x-3}
$$

$d(x)=\frac{x^{2}-4}{x^{2}+1}$

$$
y=\frac{x^{3}+4 x^{2}+3 x}{x+1}
$$

