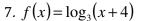
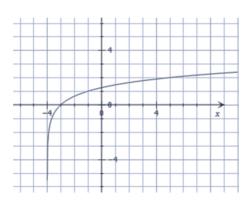


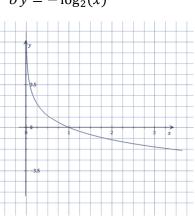
Answer the following problems with as much details, explanations, and work that is appropriate. 1. Rewrite each equation in exponential form, then evaluate the logarithm.

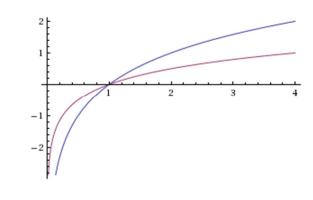
a. $x = \log_4 64$ b. $x = \log_2 32$ c. $x = \log 100000$

For each function (a) find the domain, (b) the equation of the vertical asymptote, (c) and describe the transformation of $f(x) = \log(x)$.

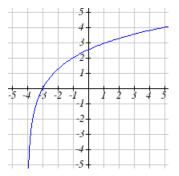

- 2. $f(x) = \log(x+2)$ Domain: $(-2, \infty)$, vertical asymptote: x = -2. 3. $f(x) = \log(3x+1)$ Domain: $(-\frac{1}{3}, \infty)$, vertical asymptote: $x = -\frac{1}{3}$. 4. $f(x) = 2\log(-x)+1$ Domain: x < 0, vertical asymptote: 0.
- *5.* Sketch a graph of each pair of function.


$$f(x) = \log_2(x), \ g(x) = \log_4(x)$$


Describe the similarities & differences in these graphs. Both pass through (1,0) and have an asymptote of x=0. $log_4(x)$ is below $log_2(x)$ for $(0, \infty)$


Sketch each transformation.

 $6y = -\log_2(x)$



8. Find a formula in the form $f(x) = a \log_b(x + c)$ for the transformed logarithm graph shown.

 $f(x) = 2\log_3(x+4)$