Pre-Calculus Name:

4B: Graphing Logarithmic Functions

Logarithmic Functions - The Inverse of an Exponential Function

The inverse of an exponential function $f(x) = b^x$ is called the **logarithmic function with base** b, which we write as $\log_b(x)$ or $\log_b x$. Written as inverses, we say if b > 0 and $b \neq 1$ if $f(x) = b^x$, then $f^{-1}(x) = \log_b x$

Remember: <u>Converting between Logarithmic and Exponential form:</u>

If x > 0 and $0 < b \neq 1$, then $y = \log_b(x)$ is equivalent to $b^y = x$.

That is... The log is the power!

<u>Try these</u>: Write each logarithmic equation in exponential form to solve for the variable.

- a) $\log_2(8) = y$ c) $\log_5(25) = y$
- b) $\log_2(\frac{1}{8}) = y$ d) $\log_3(\frac{1}{9}) = y$

Consider This: Can you find the logarithm of a non-positive number? That is, could you find the following logarithms: $\log_2(0) =$?, $\log_2(-8) =$? *Explain why or why not.*

Graphing Logarithmic Functions

Complete the tables and use them graph the functions by hand on the same graph.

 $y = \log_2 x$

 $y = \log_3 x$ $x \qquad y$ 9 3 1 $\frac{1}{3}$ $\frac{1}{9}$

Translating Common and Natural Logarithms

We often use logarithms with base 10. We write these logarithms as $y = \log x$ without writing in the base number.

Another important logarithm is the natural logarithm with is base $e \approx 2.718281828$. We write this as $y = \ln x$ (which means $y = \log_e x$).

Now let's explore some translations. Graph the following on your calculator and sketch the graph. Here we will use $\log x$ to represent the common (base 10) logarithm

Describe how the values of *a*, *b*, *c* and *d* affect the graph of $y = a \log(bx + c) + d$

a:

b:

с:

d:

Finding the Domain of a Logarithmic Function

We discovered above that we cannot find the logarithm of a non-positive number (0 or negatives). We can use this idea to determine what the domain is of a logarithmic function by finding the set of numbers that forces the value inside the logarithm to be positive.

Try it: State the domain of each function.

a) $y = \log_3(x)$ b) $y = \log_5(x + 4)$ c) $y = \log(4x)$ d) $y = \ln(x - 5) + 10$ e) $y = 7 \ln(2x + 5)$