A Pre-Calculus	Name:	Date	Period	
	Name.	Date.	Feriou.	

Pre-Calculus Unit 4 Practice Test

Learning Target 4A—I can graph and describe transformations for exponential functions.

1. Graph the following functions and describe the transformation(s) for $f(x) = 3^x$.

- 2. Write the equation for $f(x) = 6^x$ that undergoes the following transformations:
 - Shifted left 3 units,
 - 4 units down,
 - and reflected across the *x*-axis.
- 3. Write the equation for $f(x) = 3^x$ that undergoes the following transformations:
 - Shifted right 2 units,
 - 3 units up,
 - and reflected across the *x*-axis.

If all of the graphs below have equations with the form $f(x) = ab^x$

- 4. Which graph has the smallest *a* value?
- 5. Which graph has the largest *a* value?
- 6. Which graph has the smallest *b* value?
- 7. Which graph has the largest *b* value?

Learning Target 4B—I can graph and describe transformations for logarithmic functions.

- 8. Describe the transformations that change $f(x) = \log_3 x$ to $g(x) = \log_3(x-4) + 7$.
- 9. Describe the transformations that change $f(x) = \log_2 x$ to $g(x) = -2\log_2(x+2) 3$.
- 10. Find the domain and vertical asymptote of $f(x) = \log(3x + 1)$.

11. Graph $f(x) = \log_2(x - 1) + 2$. Describe the transformation(s) from $\log_2 x$.

12. Graph $f(x) = \log_3(x) - 3$. Describe the transformation(s) from $\log_3 x$.

Learning Target 4C—I can solve problems involving exponential functions.

- 13. Given the function $f(x) = 3(0.5)^x$, does f(x) represent exponential growth or decay? Explain how you know.
- 14. Given the function $f(x) = -2(1.2)^x$, does f(x) represent exponential growth or decay? Explain how you know.
- **15.** Write the exponential function that passes through the points (0, 5) and (4, 405). Show your algebraic steps to find the function.
- 16. Write the exponential function that passes through the points (2, 2) and (4, 8). Show your algebraic steps to find the function
- 17. Solve $216^{x-5} = 36^{x+2}$ for *x*.
- **18.** Solve $8 + 3^{2x+1} = 35$
- **19.** Solve $5^x = \frac{1}{625}$
- **20.** Determine whether the following table could represent an exponential function. Explain your reasoning.

x	0	1	2	3
y	1	2	4	8

Learning Target 4D—I can solve problems involving logarithmic functions.

Solve the following for <i>x</i> . 21. $\log_3 \sqrt{x-2} = 2$	22. $5 + \ln(0.02x) = -5$
23. $\log(x + 4) - \log(x) = 2\log 3$	24. $\log_2(x+3) + \log_2(x+1) = 3$

25. Evaluate $\log_4 12$.

26. Evaluate $\log_{\frac{1}{3}} 26$.

- **27.** Write the expression as a single logarithm.
 - a. $2\log_3 x + 4\log_3 y 3\log_3 z$
 - b. $4 \log_x w + 6 \log_x y$
- **28.** Write the expression as the sum or difference of logarithms with no exponents a. $\log_2(\frac{x^2}{a^2b^3})$ b. $\log_2((x-2)^5(4x)^3)$
- **29.** Calculate the number of years necessary for \$250 to grow to \$750 at 4.3% compounded continuously. Use the compound interest formula: $A=Pe^{rt}$, where A = final amount, P = starting amount, r = interest rate, and t = time in years. Show your work and round your answer to the nearest tenth.