Unit 4 Toolkit – Exponential and Logarithmic functions

This toolkit is a summary of some of the key topics you will need to master in this unit.

4A: Graphing Exponential Functions

-Calculus

Learning Target: I can graph and describe transformations for exponential functions.

An **exponential function** is of the form $f(x) = a(b^x)$

Where *a* is nonzero, *b* is positive, and $b \neq 1$. The constant *a* is the *initial value* and *b* is the *base*.

If b > 1, the graph is **exponential growth** (increasing). If 0 < h < 1 the graph is **exponential decay** (decreasing)

If 0 < b < 1, the graph is **exponential decay** (decreasing).

Transformations of Exponential Functions:The values of a, b, c and d affect the graph of $y = a(b^{x+c}) + d$ as follows:a: Vertical stretch/shrink. If a is negative, it is reflected across the x-axisb: Rate of change.If b > 1, the graph is exponential growth (increasing).If 0 < b < 1, the graph is exponential decay (decreasing).c: Horizontal shift.if c > 0, graph moves left; if c < 0, graph moves right.d: Vertical shift.

if d>0, graph moves up; If d<0, graph moves down. Horizontal Flip: If a function is written as $y = b^{-x}$, this is a horizontal reflection across the y-axis because

$$y = b^{-x} = (b^{-1})^x = \left(\frac{1}{b}\right)^x$$

4B: Graphing Logarithmic Functions

Learning Target: I can graph and describe transformations for logarithmic functions.

Key Connection: If x > 0 and $0 < b \neq 1$, then these are equivalent:

$$y = \log_b(x) \leftrightarrow b^y = x.$$

Transformations of Logarithmic Functions: The values of *a*, *b*, *c* and *d* affect the graph of $y = a \log(b(x + c)) + d$ as follows: *a*: Vertical stretch/shrink. If *a* is negative, it is reflected across the *x*-axis *b*: Horizontal stretch/shrink. If *b* is negative, the graph is reflected across the *y*-axis. *c*: Horizontal shift. *if c>0, graph moves left; if c<0, graph moves right. d*: Vertical shift. *if d>0, graph moves up; If d<0, graph moves down.*

Finding Domain of a logarithmic function: The domain of $y = \log_b x$ is $\{x | x > 0, x \in \mathbb{R}\}$

The domain of $f(x) = a \log(px + q) + d$, set px + q > 0 and solve

4C: Solving Problems with Exponentials Equations

Learning Target: I can solve problems involving exponential functions.

When solving exponential equations, we have 2 methods:

Method 1: Equivalent Exponentials

Write each side of the equation as an equivalent exponential, then set the exponents equal to each other.

Example Solve
$$3^{2x+3} = 81$$

 $3^{2x+3} = 3^4$
 $2x + 3 = 4$
 $x = \frac{1}{2}$

Method 2: Using Logarithms to Solve Exponential Equations

<u>Fundamental Relationship</u> : The fundamental connection between logarithms and exponentials is
If $b^x = y$, then $\log_b y = x$
Change of Base Formula:
To convert $\log_b x$ into another base, use the formula
$\log_b x = \frac{\log_a x}{\log_a b}$
More specifically
$\log_{h} x = \frac{\log x}{\log_{h} x} = \frac{\ln x}{\log_{h} x}$
$\log b + \log b + \log b$

<u>*Example*</u> Solve $6^{x+3} = 14$

$$x + 3 = \log_6 14$$
$$x + 3 = \frac{\ln 14}{\ln 6}$$
$$x = \frac{\ln 14}{\ln 6} - 3 \approx -1.53$$

4D: Solving Problems with Logarithmic Equations

Learning Target: I can solve problems involving logarithmic functions with properties.

Properties of Logarithms Let *b*, *R*, and *S* be positive real numbers with $b \neq 1$, and *c* a **Product Rule:** $\log_b(PQ) = \log_b P + \log_b Q$ **Quotient Rule:** $\log_b \frac{P}{Q} = \log_b P - \log_b Q$ **Power Rule:** $\log_b P^c = c \log_b P$ Where *b*, *R*, and *S* be positive real numbers with $b \neq 1$, and *c* is any real number.

To solve a logarithmic equation:

- 1. Method 1:
 - a. Simplify one side to a single logarithm and the other side as a constant,
 - b. Convert to exponential form, and
 - c. Solve.
- 2. Method 2:
 - a. Write both sides as single logarithms with the same base.
 - b. Remove the logs and set the arguments (the stuff in the log) equal.
 - c. Solve.

Example Solve with Method 1. $\log_2 x + \log_2 2x = 4$

$$log_{2}(x \cdot 2x) = 4$$

$$2x^{2} = 2^{4}$$

$$2x^{2} = 16$$

$$x^{2} = 8$$

$$x = \pm 2\sqrt{2}$$

However, by the domain, $x > 0$
Solution: $x = 2\sqrt{2}$

Example Solve with Method 2: $\log 2x + \log(x + 1) = \log(2x^2 + 1)$

$$log(2x(x + 1)) = log(2x^{2} + 1)$$

$$2x(x + 1) = 2x^{2} + 1$$

$$2x^{2} + 2x = 2x^{2} + 1$$

$$2x = 1$$

$$x = \frac{1}{2}$$