

Exploring Hyperbolas

We have now worked with the graphs of circles $\left(x^{2}+y^{2}=r^{2}\right)$ and the graphs of ellipses $\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right)$ which are closely related since an ellipse degenerates into a circle. Let's now consider a similar equation to these by changing the addition sign in the equation.

1. Consider the equation $x^{2}-y^{2}=1$.
a. Complete the table by substituting for x and solving for y. (Don't forget positive and negative square roots.)

x	y
3	
2	
1	
0	
-1	
-2	
-3	

b. What happened when $x=0$? Are there any solutions
 when $-1<x<1$?
c. Plot the points and draw the graph
d. As $x \rightarrow \infty$, what lines does the graph approach?

Parts of a Hyperbola

The standard form of a hyperbola is

The line through the foci is called the focal axis, the chord connecting the foci is called the transverse axis, and the perpendicular bisector of the transverse axis is called the conjugate axis.
We will use the Pythagorean relation $c^{2}=a^{2}+b^{2}$

	$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$	$\frac{(y-h)^{2}}{a^{2}}-\frac{(x-k)^{2}}{b^{2}}=1$
Vertices	$(\pm a, 0)$	$(0, \pm a)$
Foci	$(\pm c, 0)$	$(0, \pm c)$
Asymptotes	$y= \pm \frac{b}{a} x$	$y= \pm \frac{a}{b} x$

Example

Graph $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$

Practice Problems

For each of the ellipses below,
a) Find the coordinates of the vertices and the foci
b) Draw the asymptotes
c) And graph the hyperbola.

1. $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$
2. $\frac{y^{2}}{49}-\frac{x^{2}}{4}=1$
3. $3 x^{2}-4 y^{2}=12$
(Hint: Divide First)
4. $\frac{(x+1)^{2}}{9}-\frac{(y-3)^{2}}{16}=1$

