Name:

6.1B-Hyperbolas

e-Calculus

Exploring Hyperbolas

We have now worked with the graphs of circles $(x^2 + y^2 = r^2)$ and the graphs of ellipses $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\right)$ which are closely related since an ellipse degenerates into a circle. Let's now consider a similar equation to these by changing the addition sign in the equation.

- 1. Consider the equation $x^2 y^2 = 1$.
 - a. Complete the table by substituting for *x* and solving for *y*.(Don't forget positive and negative square roots.)

x	у
3	
2	
1	
0	
-1	
-2	
-3	

- b. What happened when x = 0? Are there any solutions when -1 < x < 1?
- c. Plot the points and draw the graph
- d. As $x \to \infty$, what lines does the graph approach?

Parts of a Hyperbola

The standard form of a hyperbola is

The line through the foci is called the *focal axis*, the chord connecting the foci is called the *transverse axis*, and the perpendicular bisector of the transverse axis is called the *conjugate axis*. We will use the **Pythagorean relation** $c^2 = a^2 + b^2$

	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(y-h)^2}{a^2} - \frac{(x-k)^2}{b^2} = 1$
Vertices	$(\pm a, 0)$	$(0, \pm a)$
Foci	$(\pm c, 0)$	$(0,\pm c)$
Asymptotes	$y = \pm \frac{b}{a}x$	$y = \pm \frac{a}{b}x$

$$\frac{Example}{Graph \frac{x^2}{4} - \frac{y^2}{9} = 1$$

Practice Problems

For each of the ellipses below,

- a) Find the coordinates of the vertices and the foci
- b) Draw the asymptotes
- c) And graph the hyperbola.

1.
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$

$$2. \quad \frac{y^2}{49} - \frac{x^2}{4} = 1$$

3. $3x^2 - 4y^2 = 12$ (Hint: Divide First)

4.
$$\frac{(x+1)^2}{9} - \frac{(y-3)^2}{16} = 1$$

