3C: Polynomial Equations \& The Fundamental Theorem of Algebra

We have seen that a polynomial function of degree n can have at most n real zeros where the graph intersects the x-axis. However, not every function has n real zeros, and some functions (like $y=x^{2}+2$) have no zeros!

So, does this mean that an equation of the form $0=2 x^{2}+8$ does not have a real solution because the graph of $f(x)=2 x^{2}+8$ does not have any x-intercepts? We know from our experience that it actually has two solutions, but they are both complex solutions. This is a result of the Fundamental Theorem of Algebra.

Fundamental Theorem of Algebra:

A polynomial function of degree $n>0$ has exactly n complex zeros.
(Some of these may be repeated zeros.)

Try This: Find all the zeros of $f(x)=2 x^{2}+8$.

Linear Factorization Theorem

Every polynomial function of degree $n>0$ can be factored into the form

$$
f(x)=a\left(x-z_{1}\right)\left(x-z_{2}\right) \cdots\left(x-z_{n}\right)
$$

where $z_{1}, z_{2}, \ldots, z_{n}$ are the complex zeros of $f(x)$. Keep in mind that if there are repeated zeros, some z_{i} values may be the same.

Factor it: Write the linear factorization of $f(x)=2 x^{2}+8$.

**Important Note: Complex zeros always come in conjugate pairs!
 i.e. If $\boldsymbol{a}+\boldsymbol{b} \mathrm{i}$ is a zero of a polynomial, then $\boldsymbol{a}-\boldsymbol{b} \mathrm{i}$ is also a zero.

Simplifying for Standard Form:

Write the polynomial in standard form, and identify the zeros of the function and the x-intercepts of the graph. Verify your answer with your calculator.

$$
f(x)=(x+1)(x+\sqrt{2} i)(x-\sqrt{2} i)
$$

Key Connections:

The following statements about a polynomial function are all equivalent for any complex number k :

1. $(x-k)$ is a factor of $f(x)$.
2. k is a zero of the function f.
3. $f(k)=0$, which implies that $x=k$ is a root or x-intercept of the graph of $f(x)$.

Finding All Zeros (including complex ones!)

We have seen that real zeros are x-intercepts, so we can find these real zeros using a graphing calculator.

Consider this:

a) Use your graphing calculator to find the real zeros of $y=2 x^{4}-4 x^{3}-x^{2}+3 x-2$
b) Does $g(x)$ have any complex zeros with imaginary parts? Explain.

To find all n zeros of a polynomial function $f(x)=a_{1} x^{n}+a_{2} x^{n-1}+\cdots+a_{n}$, we need to do the following:

Finding all complex zeros of a polynomial:

1. Use the rational root theorem or a graphing calculator to find a possible real zero z_{1}.
2. Use synthetic division to divide the polynomial by z_{1}.

If we get a remainder of 0 , then z is a zero of the function and this gives us a factorization

$$
f(x)=\left(x-z_{1}\right)\left(q_{1} x^{n-1}+q_{2} x^{n-2}+\cdots q_{n-1}\right)
$$

where $q_{1}, q_{2}, \ldots, q_{n-1}$ are the coefficients of the quotient that result from the synthetic division.
3. If the quotient is a quadratic, use the techniques we know to solve $0=q_{1} x^{2}+q_{2} x+q_{3}$. If you can factor the quotient, do this.
4. If the quotient in (2) is not a quadratic and we cannot factor it other ways, then repeat steps (1) and (2) until one of these is true.

Tryit out.

a) Find all the zeros of this functions.

$$
f(x)=4 x^{3}+8 x^{2}+7 x+14
$$

b) Solve the equation $-3 x^{4}-2 x^{3}=-35 x^{2}+14 x-24$.
(Note: this really is the same as (a). Try making the left side 0 first.)
c) Solve the equation $x^{4}+10 x^{3}=-26 x^{2}-10 x-25$
d) How many complex solutions should the equation in (c) have according to the Fundamental Theorem of Algebra?

Did you find all the solutions to this equation? Explain?

