

## **4B-1:** Exponential Equations and Log Properties

## Exponential Equations of Base 10 and *e*

**Fundamental Relationship:** The fundamental connection between logarithms and exponentials is If  $b^x = y$ , then  $\log_b y = x$ 

This means that finding log<sub>b</sub> y is equivalent to asking the question: "What power of base b is needed to get the value y?"

So, *the log is the power!* 

Logarithmic Identities

Since the logarithm is the power of base *b* needed to produce *x*, we have the itentities:  $b^{\log_b x} = x$ , and  $\log_b b^x = x$ 

*Example.* Solve the following exponential equations using the logarithmic identities above. Use substitution to check your answer.

a)  $10^{x} = 110$   $x = \log(110) \approx 2.041$  b)  $10^{x} = 0.005$   $x = -\log(200) \approx -2.301$  c)  $3(10^{x}) = 213$   $x = \log(71) \approx 1.851$  d)  $10^{4x} = 0.5$   $x = \frac{\log(.5)}{4} \approx -0.075$  e)  $e^{x} = 23$   $x = \ln(23) \approx 3.135$  f)  $2e^{x+2} = 24$  $x = \ln(12) - 2 \approx 0.485$ 

## **Properties of Logarithms**

*Exploration* Use your calculator to approximate a solution to each of the following.

a)  $\log(3 \cdot 5) =$ b)  $\log 3 + \log 5 =$ c)  $\log(\frac{3}{5}) =$ d)  $\log 3 - \log 5 =$ e)  $\log 3^5 =$ f)  $5 \cdot \log 3 =$  We notice that there are some similar answers above, so let's explore more. Let

 $\log_b P = p$ , and  $\log_b Q = q$ .

Which implies

 $P = b^p$ , and  $Q = b^q$ 

Let's find equivalent forms of these equations by changing them to exponential equations.

 $\log_b(PQ) = y$ 

 $\log_b \frac{P}{Q} = y$ 

 $\log_b P^c = y$ 

Properties of LogarithmsLet b, R, and S be positive real numbers with  $b \neq 1$ , and c aProduct Rule:  $\log_b(PQ) = \log_b P + \log_b Q$ Quotient Rule:  $\log_b \frac{P}{Q} = \log_b P - \log_b Q$ Power Rule:  $\log_b P^c = c \log_b P$ Where b, R, and S be positive real numbers with  $b \neq 1$ , and c is any real number.

Change of Base Formula for Logarithms

$$\log_b x = \frac{\log_a x}{\log_a b}$$

*Example* Use the change-of-base formula to evaluate the following to 3 decimal places. Check your answer by evaluating the power.

a) 
$$\log_2 5 = \frac{\log 5}{\log 2} = \frac{\ln 5}{\ln 2} \approx 2.322$$

b) 
$$\log_5 130 = \frac{\log 130}{\log 5} = \frac{\ln 130}{\ln 5} \approx 3.024$$

c) 
$$\log_5 2 = \frac{\log 2}{\log 5} = \frac{\ln 2}{\ln 5} \approx 0.431$$

d) 
$$\log_{0.5} 4 = \frac{\log 4}{\log 0.5} = \frac{\ln 4}{\ln 0.5} = -2$$

## **Exercises**

Solve the following using Logarithmic Identities.

1.  $10^{x} + 5 = 90$  x = log(85)1. 9294189257143 2.  $5(10^{x}) = 200$  x = log(40)1. 602059991328

3. 
$$3(e^{x+1}) = 17$$
  
 $x = ln\left(\frac{17}{3}\right) - 1$   
0. 7346010553881  
4.  $4e^{2x} - 3 = 9$   
 $x = \frac{ln(3)}{2}$   
0. 5493061443341

Use the change-of-base formula to evaluate the logarithm.

5.  $\log_3 30 =$  3.09590327428946.  $\log_7 30 =$  1.74786969650857.  $\log_{0.5} 15 =$  -3.90689059560858.  $\log_{0.2} 20 =$ -1.8613531161468

Solve each equation algebraically. Get a numerical approximation for your solution and check it by substitution.

9. 
$$5^x = 512$$
  
 $x = 9 \log_5 2$   
3.8760890226605

10. 
$$3^{5x} = 100$$
  
 $x = \frac{2 \log_3 10}{5}$   
0. 8383613097158  
11.  $e^x = 217.5$   
 $x = ln(217.5)$   
5.3821988505287

12.  $2.5^{x} = 300$   $x = log_{2.5} 300$ 6. 2248610361799 13.  $4(5^{x}) = 210$   $x = log_{5}\left(\frac{105}{2}\right)$ 2. 4609915915348

14. 
$$4^{x+1} - 2 = 10$$
  
 $x = \frac{\log_2 12}{2} - 1$   
0. 7924812503606

15. 
$$4(1+.25^{x/4}) = 40$$
  
 $1+.25^{x/4} = 10$   
 $.25^{x/4} = 9$   
 $\frac{x}{4} = \log_{.25} 9$   
 $x = 4 \log_{.25} 9$   
 $x = -6.34$ 

The formula for interest that is *compound continuously* is  $A = Pe^{rt}$ , where A=final amount, P=starting amount, r=interest rate(as a decimal), and t=time in years.

Find the missing variable.

16. A = \$200, P = \$100, r = 2.3%

$$200 = 100e^{.023t}$$
$$t = \frac{1000 \ln(2)}{23}$$
$$30.1368339373889$$

17. 
$$A = $3000, P = $100, t = 30$$
  
 $3000 = 100e^{30r}$   
 $r = \frac{ln(30)}{30}$   
0.1133732460554