

Period:

4C: Problems with Logarithmic Functions

In this lesson we will use the properties of logarithms to solve equations that involve logarithms. We first need to recall these properties from earlier:

Properties of LogarithmsLet b, R, and S be positive real numbers with $b \neq 1$, and c aProduct Rule: $\log_b(PQ) = \log_b P + \log_b Q$ Quotient Rule: $\log_b \frac{P}{Q} = \log_b P - \log_b Q$ Power Rule: $\log_b P^c = c \log_b P$ Where b, R, and S be positive real numbers with $b \neq 1$, and c is any real number.

Example Assume that *x* and *y* are positive below.

a) Write as a sum of logarithms with no exponents: $\log \frac{3x^2}{y}$

$$log 3 + 2 log x - log y$$

b) Write as a single logarithm: $3 \ln 2 - 2 \ln 4 + \frac{1}{2} \ln 16$

$$\ln 2^3 - \ln 4^2 + \ln 16^{1/2} = \ln \left(\frac{8}{16} \cdot 4\right) = \ln 2$$

To solve equations with logarithms, we can do one of the following:

- 1. Set the equation equal to zero, graph the corresponding function, and find the zeros.
- 2. Write both sides of the equation as <u>one</u> logarithm with the same base, convert to exponential form, and solve.

After solving, you must check your domain to be sure that *x* is in the domain of the original function.

<u>Example.</u>Solve.

a) $\log_3(x+1) = 4$

b) $2\log x + 3\log 2 = \log 16$

$$log(x^2 \cdot 2^3) = log 16$$
$$8x^2 = 16$$
$$x^2 = 2$$
$$x = \pm\sqrt{2}$$

x cannot be negative in original problem! So the only solution is $x = \sqrt{2}$

Exercises

Assuming *x* and *y* are positive, use the properties of logarithms to write the expression as a sum or difference of logarithms or multiples of logarithms.

Assuming *x*, *y*, and *z* are positive, use properties of logarithms to write the expression as a single logarithm.

4. $\ln y - \ln 3$ $\ln \frac{y}{3}$ 5. $4 \log y - \log z$ 6. $3 \ln 2 - 2 \ln 4$ $\ln \frac{2^3}{4^2} = \ln \frac{1}{2}$ or ... $3 \ln 2 - 2 \ln 2^2$ $3 \ln 2 - 2 \ln 2^2$ $3 \ln 2 - 4 \ln 2$

Find the exact solution algebraically, obtain a numerical approximation, and check it by substituting into the original equation.

8. $3\ln(x-3) + 4 = 5$ $x = \sqrt[3]{e} + 3$ 7. $\log_4(1-x) = 1$ x = -39. $3 - \log(x + 2) = 5$ $x = -\frac{199}{100}$ $10.\,\frac{1}{2}\ln(x+3) - \ln x = 0$ $\ln(x+3)^{\frac{1}{2}} = \ln x$ (x+3)^{\frac{1}{2}} = x x+3 = x^{2} $x = \frac{1 \pm \sqrt{13}}{2}$, by domain restrictions $x = \frac{1 + \sqrt{13}}{2}$ 12. $\ln(x - 3) + \ln(x + 4) = 3 \ln 2$ 11. $\log x - \frac{1}{2}\log(x+4) = 1$ $\log \frac{x}{\sqrt{x+4}} = 1$ $\frac{x}{\sqrt{x+4}} = 10$ $\ln(x-3)(x+4) = \ln 2^3$ $x^2 + x - 12 = 8$ x = -5 or x = 4 $x = 10\sqrt{x+4}$ $so \dots x = 4$ $x^2 = 100(x+4)$ $x^2 - 100x - 400 = 0$ $x = 50 - 10\sqrt{29}$ or $x = 10\sqrt{29} + 50$ **Solution**: $x = 10\sqrt{29} + 50$ 13. $\log(x - 2) + \log(x + 5) = 2 \log 3$ $\log(x-2)(x+5) = \log 3^2$ $x^2 + 3x - 10 = 9$ $x^2 + 3x - 19 = 0$ $x = \frac{-\sqrt{85} - 3}{2}$ or $x = \frac{\sqrt{85} - 3}{2}$

Solution: $x = \frac{-3 + \sqrt{85}}{2}$

14. Determine whether a linear, logarithmic, exponential, power, or logistic regression equation is the best model for the data using your calculator and finding the R^2 value.

Year 1	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000
Alaska's 6 Population	63.6	64.4	55.0	59.2	72.5	128.6	226.2	302.6	401.9	550.0	626.9

<mark>Best Curve = Logistic</mark>