

Period:

## 4C: Problems with Logarithmic Functions

In this lesson we will use the properties of logarithms to solve equations that involve logarithms. We first need to recall these properties from earlier:

**Properties of Logarithms** Let *b*, *R*, and *S* be positive real numbers with  $b \neq 1$ , and *c* a **Product Rule:**  $\log_b(PQ) = \log_b P + \log_b Q$  **Quotient Rule:**  $\log_b \frac{P}{Q} = \log_b P - \log_b Q$  **Power Rule:**  $\log_b P^c = c \log_b P$ Where *b*, *R*, and *S* be positive real numbers with  $b \neq 1$ , and *c* is any real number.

*Example* Assume that *x* and *y* are positive below.

- a) Write as a sum of logarithms with no exponents:  $\log \frac{3x^2}{y}$
- b) Write as a single logarithm:  $3 \ln 2 2 \ln 4 + \frac{1}{2} \ln 16$

To solve equations with logarithms, we can do one of the following:

- 1. Move all logarithms to one side, simplify to make one logarithm, then convert to exponential form and solve.
- 2. Write both sides of the equation as <u>one</u> logarithm with the same base, convert to exponential form, and solve.

After solving, you must check your domain to be sure that *x* is in the domain of the original function.

<u>Example.</u> Solve.

a)  $\log_3(x+1) = 4$ 

b)  $2\log x + 3\log 2 = \log 16$ 

## **Exercises**

Assuming *x* and *y* are positive, use the properties of logarithms to write the expression as a sum or difference of logarithms or multiples of logarithms.

1. 
$$\log_2 y^5$$
 2.  $\log_2 \frac{2x^3}{y^2}$  3.  $\log 1000x^4$ 

Assuming *x*, *y*, and *z* are positive, use properties of logarithms to write the expression as a single logarithm.

4.  $\ln y - \ln 3$  5.  $4 \log y - \log z$  6.  $3 \ln 2 - 2 \ln 4$ 

Find the exact solution algebraically, obtain a numerical approximation, and check it by substituting into the original equation.

- 7.  $\log_4(1-x) = 1$ 8.  $3\ln(x-3) + 4 = 5$
- 9.  $3 \log(x+2) = 5$   $10 \cdot \frac{1}{2} \ln(x+3) - \ln x = 0$
- **11.**  $\log x \frac{1}{2}\log(x+4) = 1$  **12.**  $\ln(x-3) + \ln(x+4) = 3\ln 2$
- 13.  $\log(x 2) + \log(x + 5) = 2\log 3$
- 14. Determine whether a linear, logarithmic, exponential, power, or logistic regression equation is the best model for the data using your calculator. Let x = years after 1890

| best model for the data asing your calculator. Betw |      |      |      |      |      | jearbe | Jeans areer 1090 |       |       |       |       |  |
|-----------------------------------------------------|------|------|------|------|------|--------|------------------|-------|-------|-------|-------|--|
| Year                                                | 1900 | 1910 | 1920 | 1930 | 1940 | 1950   | 1960             | 1970  | 1980  | 1990  | 2000  |  |
| Alaska's<br>Population                              | 63.6 | 64.4 | 55.0 | 59.2 | 72.5 | 128.6  | 226.2            | 302.6 | 401.9 | 550.0 | 626.9 |  |

- **15.** In Chemistry, pH value is determined by the hydrogen ion concentration ( $H^+$ ) relative to pure water. The function for finding pH is  $p(H^+) = 7 + \log(\frac{1}{H^+})$ .
  - a. State the domain of the function  $p(H^+)$ .
  - **b.** For lemon juice, we know  $H^+ \approx 100,000$ . Find the pH of lemon Juice.
  - **c.** If a solution of bleach has a pH value of  $p(H^+) = 13.2$ , find the value of  $H^+$ .