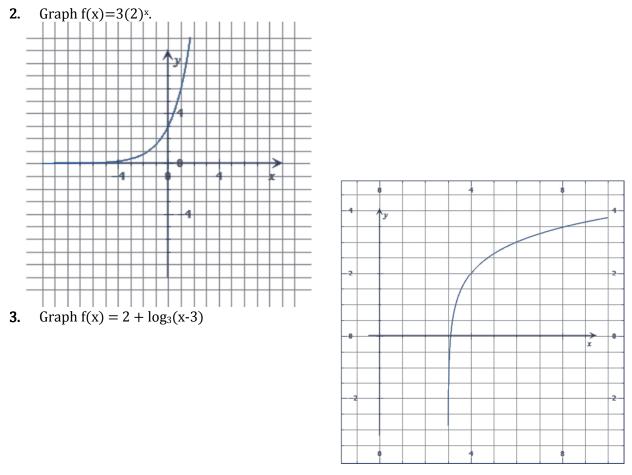


Name:

Period:

Unit 4 Test Review Learning Targets: 4A-4C


Complete the problems below, show your work, and write your answer in the blank provided.

<u>Target 4A</u>

I can graph and describe transformations for exponential and logarithmic functions.

1. Describe the transformations that change $f(x) = \log_2 x \text{ to } g(x) = 3 + 2\log_2(x-3)$.

Up 3 by the first 3, Right 3 by (x - 3), and Stretched vertically by a factor of 2

4. Write the equation for $f(x) = 4^x$ that undergoes the transformations of being shifted 2 units right, 5 units down, and reflected across the y-axis.

 $y = 4^{-(x-2)} - 5$

Target 4B

I can solve problems involving exponential or logistic functions.

5. Solve $3(8^x) = 50$ for *x*. Round your answer to the nearest tenth.

$$8^{x} = \frac{50}{3}$$
$$x = \log_{8}\left(\frac{50}{3}\right) = 1.353$$

6. Given the function $f(x) = 3(0.5)^x$, does f(x) represent exponential growth or decay? Explain how we know.

Exponential Decay since the base, 0.5, is less than 1.

- 7. Given the function $f(x) = \frac{12}{(1+3(0.2)^x)}$
 - **a.** What is the limit of growth?

b. What is the y-intercept of f(x)?

Let
$$x = 0$$

 $y = \frac{12}{1+3(0.2)^0} = \frac{12}{1+3} = \frac{12}{4} = 3$
 $y - intercept: (0,3)$

8. Write the exponential function that passes through the points (0, 5) and (4, 405).

 $y = a(b^x)$ "initial value" = a = 5

Since $5 = a(b^0) \rightarrow 5 = a$

So,
$$y = 5(b^{x})$$
. Now substitute (4,405)
 $405 = 5(b^{4})$
 $81 = b^{4}$
 $\sqrt[4]{81} = b$
 $3 = b$

Function: $y = 5(3^{x})$

Target 4CI can solve problems involving logarithmic functions.

9. Solve $\log_3 \sqrt{x-2} = 2$ for *x*.

$$\sqrt{x-2} = 3^2$$
$$\left(\sqrt{x-2}\right)^2 = (9)^2$$
$$x-2 = 81$$
$$x = 83$$

10. Evaluate log₄12.

$$\log_4 12 = \frac{\log 12}{\log 4} = 1.792$$

11. Write the expression as a single logarithm.

$$2\log_3 X + 4\log_3 Y - 3\log_3 Z$$

$$\frac{\log_{3} x^{2} + \log_{3} y^{4} - \log_{3} z^{3}}{\log_{3} x^{2} y^{4} - \log_{3} z^{3}}$$
$$\log_{3} \left(\frac{x^{2} y^{4}}{z^{3}}\right)$$

12. Write the expression as the sum or difference of logarithms.

$$\log_2(x^2/(a^2b^3))$$

$$\log_2\left(\frac{x^2}{a^2b^3}\right) = \log_2 x^2 - \log_2(a^2b^3)$$

= $\log_2 x^2 - (\log_2 a^2 + \log_2 b^3)$
= $2\log_2 x - 2\log_2 a - 3\log_2 b$

Applications

13. A telescope is limited in its usefulness by the brightness of the star it is aimed at and by the diameter of its lens. A formula for the limiting magnitude *L* of a telescope, that is, the magnitude of the dimmest star that it can be used to view, is given by L(d) = 9 + 5.1 log(d)

Where *d* is the diameter (in inches) of the lens.

a) State the domain of this function.

Domain: $(0, \infty)$

- b) What is the limiting magnitude of a 3.5-inch telescope? $L(3.5) = 9 + 5.1 \log(3.5) = 11.775$
- c) What diameter is required to view a star of magnitude 14? $14 = 9 + 51 \log(d)$

$$14 = 9 + 5.1 \log(d)$$

$$5 = 5.1 \log(d)$$

$$\frac{5}{5.1} = \log(d)$$

$$d = 10^{\frac{5}{5.1}} = 9.559$$

14. Calculate the number of years necessary for \$250 to grow to \$750 at 4.3% compounded continuously. Use the compound interest formula: $A=Pe^{rt}$, where A = final amount, P = starting amount, r = interest rate, and t = time in years. Show your work and round your answer to the nearest tenth.

$$750 = 250e^{.043t}$$

$$3 = e^{.043t}$$

$$\ln 3 = .043t$$

$$\frac{\ln 3}{.043} = t$$

$$25.549 = t$$

15. Use the data in the table below.

Х	0.25	0.5	2	4	8	15
у	-2.52	-1.38	1.45	2.18	4.15	5.91

a. Write a natural logarithmic function for the data.

$$y = .03485 + 2.001 \ln(x)$$

b. What is the value of the function when x = 20?

y = 6.03001