

Name:

Period:

# Unit 4 Test Review Learning Targets: 4A-4C

Complete the problems below, show your work, and write your answer in the blank provided.

### <u>Target 4A</u>

I can graph and describe transformations for exponential and logarithmic functions.

**1.** Describe the transformations that change  $f(x) = \log_2 x \text{ to } g(x) = 3 + 2\log_2(x-3)$ .

**2.** Graph  $f(x)=3(2)^{x}$ .



**3.** Graph  $f(x) = 2 + \log_3(x-3)$ 

**4.** Write the equation for  $f(x) = 4^x$  that undergoes the transformations of being shifted 2 units right, 5 units down, and reflected across the y-axis.

#### Target 4B

I can solve problems involving exponential or logistic functions.

**5.** Solve  $3(8^x) = 50$  for *x*. Round your answer to the nearest tenth.

**6.** Given the function  $f(x) = 3(0.5)^x$ , does f(x) represent exponential growth or decay? Explain how we know.

- 7. Given the function  $f(x) = \frac{12}{1+3(0.2)^x}$ 
  - **a.** What is the limit of growth?
  - **b.** What is the y-intercept of f(x)?
- **8.** Write the exponential function that passes through the points (0, 5) and (4, 405).

## <u>Target 4C</u>

I can solve problems involving logarithmic functions.

9. Solve  $\log_3 \sqrt{x-2} = 2$  for *x*.

**10.** Evaluate log<sub>4</sub>12.

**11.** Write the expression as a single logarithm.

 $2\log_3 X + 4\log_3 Y - 3\log_3 Z$ 

**12.** Write the expression as the sum or difference of logarithms.

$$\log_2\left(\frac{x^2}{a^2b^3}\right)$$

#### **Applications**

**13.** A telescope is limited in its usefulness by the brightness of the star it is aimed at and by the diameter of its lens. A formula for the limiting magnitude *L* of a telescope, that is, the magnitude of the dimmest star that it can be used to view, is given by L(d) = 9 + 5.1 log(d)

Where *d* is the diameter (in inches) of the lens.

- a) State the domain of this function.
- b) What is the limiting magnitude of a 3.5-inch telescope?
- c) What diameter is required to view a star of magnitude 14?
- **14.** Calculate the number of years necessary for \$250 to grow to \$750 at 4.3% compounded continuously. Use the compound interest formula:  $A=Pe^{rt}$ , where A = final amount, P = starting amount, r = interest rate (as a decimal), and t = time in years. Show your work and round your answer to the nearest tenth.

**15.** Use the data in the table below.

| Х | 0.25  | 0.5   | 2    | 4    | 8    | 15   |
|---|-------|-------|------|------|------|------|
| у | -2.52 | -1.38 | 1.45 | 2.18 | 4.15 | 5.91 |

**a.** Write a natural logarithmic function for the data.

**b.** What is the value of the function when x = 20?