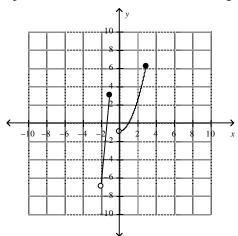


Date:

Pre-Calculus Unit 1 Part #1 Practice Test

- ✓ Learning Target 1A—I can describe a set of numbers in a variety of ways.
- ✓ Learning Target 1B—I can identify functions from data tables, graphs, and descriptions of set relations.
- ✓ Learning Target 1C—I can identify increasing and decreasing functions and intervals.


For each of the following, fill in the missing type of interval or graph. Describe the interval.

1.	Interval (3, 7]
	Inequality $3 < x \le 7$
	Graph $\left\langle \begin{array}{c} 1 \\ 3 \end{array} \right\rangle$
	Description Bounded, half-open
2.	Interval $(3, \infty)$
	Inequality $x > 3$
	3 Description Unbounded, open
3.	Interval $(-\infty, 9]$
	Inequality $x \le 9$
	Graph O 9
	Description Unbounded, closed

4. Describe the set of numbers using interval notation. $x \ge 5$ or x < 11

[5, 11)

5. Use the graph below to find the domain and range.

<u> $D: (-2, 1] \cup (0, 3]$ </u> <u>R: (-7, 6, 2] approx.</u>

6. For which interval(s) is the function $y = 2x^3 - 8x + 5$ increasing and decreasing?

Increasing: $(-\infty, -1, 15), (1, 15, \infty)$

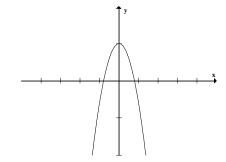
Decreasing: (-1.15, 1.15)

7. Find the minimum(s) and maximum(s) for $f(x) = -3x^3 + 8x^2 + 10x - 9$?

<u>Minimum: (-.49, -11.6)</u>

<u>Maximum: ((2.27, 19.8)</u>

8. Describe the end behavior of the graph of $g(x) = 4x^5 - 3x$.


As $x \to \infty$, $y \to \infty$

As $x \to -\infty$, $y \to -\infty$

9. Describe the set of numbers using set-builder notation. $\{-9, -8, -7, -6, -5, ...\}$

$$\{x: x \ge -9, x \in \mathbb{Z}\}$$

10. Does the graph below represent a function? Explain.

Yes, it passes the vertical line test

11. Find the domain and range of the relation $\{(-2, 4), (3, 5), (4, -2), (3, 8)\}$.

D: {-2, 3, 4}

R: {-2, 4, 5, 8}

12. Describe the domain and range of $y = \sqrt{x+3}$ in interval notation.

D: [−**3**,∞)

R: [0, ∞)

13. What are the types of discontinuity?

Infinite, Jump, <u>Removable</u>

14. Graph the function $y = x^4 + 2x^3 + 3x$ on your calculator. Find the x-value of any extrema to the nearest hundredth and describe what type of extrema it is.

Min: -1.75

15. Write an expression in interval notation that describes the following: "The cost of pizza varies from \$5 to \$15.

[5, 15]___

16. Describe the continuity, domain, range, increasing, decreasing, maximums, minimums, and end behavior for the function $y = \frac{x^2}{2-x^2}$. Also sketch a picture of the graph.

Domain	Range	Continuity	Increasing Intervals	Decreasing Intervals	Maximum or minimums	End Behavior
$ \begin{pmatrix} -\infty, -\sqrt{2} \\ \cup (-\sqrt{2}, \sqrt{2}) \\ \cup (\sqrt{2}, \infty) \end{pmatrix} $	(−∞, −1) ∪ [0 , ∞)	Infinite Discontinuity @ $x = \sqrt{2}$ and $x = -\sqrt{2}$	$(0,\sqrt{2}),$ $(\sqrt{2},\infty)$	$(-\infty,\sqrt{2}),$ $(-\sqrt{2},0)$	Minimum at (0, 0)	As $x \to \infty$, $y \to -1$. as $x \to -\infty$, $y \to -1$