

Consider the home values in these two neighborhoods:

Orchard hill: \$125k, \$132k, \$144k, \$156k, \$452k River district: \$178k, \$189k, \$204k, \$213k, \$227k

- We prefer to use the mean as a measure of center since it considers every number ...
- Find the mean for each neighborhood.
 - Orchard hill:

River district:

• By itself the mean leaves out important information

Range

<u>Definition: Range</u> Range = max – min One way to measure the spread is to calculate the range. The range is the difference between the largest and smallest values in the data set;

- The range is strongly affected by outliers
- Find the range for the two neighborhoods

Orchard hill:

River district:

Average Deviation

• Each data value has an associated deviation from the mean,

 $\frac{Definition: Deviation from the Mean}{x - \overline{x}}$

Example The deviation of the first Orchard Hill house is $x - \bar{x} = \$125,000 - \$201,800 = -\$76,800$

- Note: A deviation is positive if it falls above the mean and negative if it falls below the mean
- The Average Deviation is the sum of the absolute value of deviations divided by the number of items.

$$\frac{\text{Definition: Average Deviation}}{\frac{\Sigma|x-\overline{x}|}{n}}$$

• Orchard hill: \$125k, \$132k, \$144k, \$156k, \$452k;

mean = \$201,800

River district: \$178k, \$189k, \$204k, \$213k, \$227k

mean = \$202,200

• Find the average deviation from the mean for each neighborhood

Orchard Hill

Home Value	$x - \overline{x}$	$ x - \overline{x} $
\$125,000	-\$76,800	\$76,800
\$132,000	-\$69,800	\$69,800
\$144,000	-\$57,800	\$57,800
\$156,000	-\$45,800	\$45,800
\$452,000	\$250,200	\$250,200

Average (mean) deviation = \$100,080

A large deviation from the mean!

River District

Home Value	$x - \overline{x}$	$ x - \overline{x} $
\$178,000	-\$24,200	\$24,200
\$189,000	-\$13,200	\$13,200
\$204,000	\$1,800	\$1,800
\$213,000	\$10,800	\$10,800
\$227,000	\$24,800	\$24,800

Average (mean) deviation = \$14,960

A small deviation from the mean!

Standard Deviation

- The Standard Deviation Gives a measure of variation by summarizing the *deviations* of each observation from the mean and calculating an *adjusted average* of these deviations
- Standard Deviation for populations is represented by the lower case Greek letter σ ("sigma")

Formula:

Standard Deviation:
$$\sigma = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n}}$$

$$\sigma = \sqrt{\frac{\sum (x - \overline{x})^2}{n}}$$

Steps for finding Standard Deviation:

- 1. Find the mean
- 2. Find the deviation of each value from the mean
- 3. Square the deviations
- 4. Add the squared deviations
- 5. Divide the sum by *n*
- 6. Find the square root of that sum

Example: Find the **Stand**ard Deviation

Metabolic rates of 7 men (cal./24hr.) :1792 1666 1362 1614 1460 1867 1439

First Find Mean: $\bar{x} = 1600$ Now find the deviations and squared deviations

Observations	Deviations $(x - \bar{x})$	Squared deviations $(x - \bar{x})^2$
--------------	----------------------------	--------------------------------------

1792	1792–1600 = 192	$(192)^2 = 36,864$
1666	1666 - 1600 = 66	$(66)^2 = 4,356$
1362	1362 –1600 = -238	$(-238)^2 = 56,644$
1614	1614 - 1600 = 14	$(14)^2 = 196$
1460	1460 - 1600 = - 140	$(-140)^2 = 19,600$
1867	1867 –1600 = 267	$(267)^2 = 71,289$
1439	1439 –1600 = -161	$(-161)^2 = 25,921$
	sum = 0	sum = 214,870

Now apply the formula

$$\sigma^{2} = \frac{214,870}{7} \approx 30,695.71$$

$$\sigma = \sqrt{30,695.71} = 175.2 \ calories$$

You Try It! Find the standard deviation of the data collected in class.

Find the mean:

Now find the deviations and squared deviations

Observations	Deviations $(x - \overline{x})$	Squared deviations $(x - \overline{x})^2$
	sum = $\Sigma(x - \bar{x})$ =	sum = $\Sigma (x - \overline{x})^2$ =

$$\sigma^2 = \frac{\Sigma(x-\bar{x})^2}{n} =$$

$$\sigma = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n}} =$$

Properties of the Standard Deviation

- σ measures the spread of the data
- $\sigma = 0$ only when all observations have the same value, otherwise $\sigma > 0$. As the spread of the data increases, σ gets larger.
- σ has the same units of measurement as the original observations. σ is typically rounded to one more place than the original data.
- σ is not resistant. Outliers (skewed data) can greatly increase σ .

Standard Deviation: 2 types

• Population Standard Deviation:

$$\sigma = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n}}$$

• Sample Standard Deviation

$$s = \sqrt{\frac{\Sigma(x - \bar{x})^2}{n - 1}}$$

Empirical Rule

If a population is "normal" (meaning the graph is symmetric), then

- 68% of the population falls within 1 standard deviation of the mean
- 95% of the population falls within 2 standard deviation of the mean
- 99.7% of the population falls within 3 standard deviation of the mean

Note: the Greek Letter μ (pronounced "me-you" or "mew") represents the mean of the population.