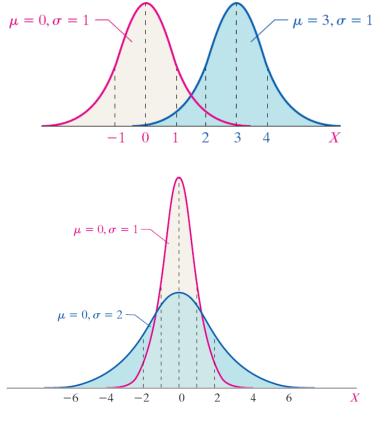


7.1 The Graph of a Normal Curve

Relative frequency histograms that are symmetric and bellshaped are said to have the shape of a **normal curve.**

curve (bell-shaped and symmetric).



distributed, or has a **normal probability distribution**, then a relative frequency histogram of the random variable has the shape of a normal

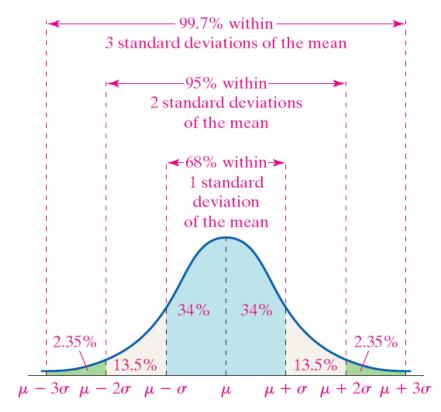
Some Examples:

Here are two normal curves that have the same σ but different μ .

How are they the same, and how are they different?

Here are two normal curves that have the same μ but different σ .

How are they the same, and how are they different?


Properties of the Normal Curve

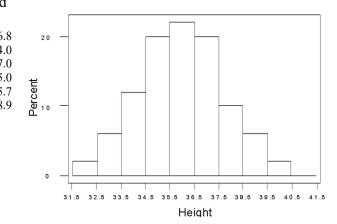
Properties of the Normal Density Curve

- 1. It is symmetric about its mean, μ.
- 2. Because mean = median = mode, the curve has a single peak and the highest point occurs at $x = \mu$.
- 3. It has inflection points at $\mu \sigma$ and $\mu \sigma$
- 4. The area under the curve is 1.
- 5. The area under the curve to the right of μ equals the area under the curve to the left of μ , which equals 1/2.
- 6. As x increases without bound (gets larger and larger), the graph approaches, but never reaches, the horizontal axis. As x decreases without bound (gets more and more negative), the graph approaches, but never reaches, the horizontal axis.

7. The Empirical Rule:

- Approx. 68% of the area under the normal curve is between x = μ - σ and x = μ + σ;
- approximately 95% of the area is between $x = \mu 2\sigma$ and $x = \mu + 2\sigma$
- approximately 99.7% of the area is between $x = \mu 3\sigma$ and $x = \mu + 3\sigma$.

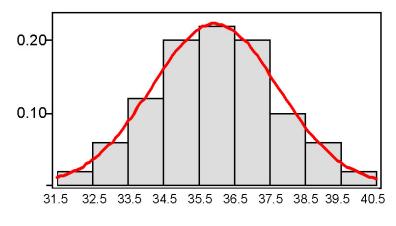
Normal Distribution


Area and the Normal Density Function

Example

The data on the next slide represent the heights (in inches) of a random sample of 50 two-year old males. (a) Draw a histogram of the data using a lower class limit of the first class equal to 31.5 and a class width of 1.

(b) D	o you tl	hink tha	t the va	riable "	height o	of 2-yea	r old
males" is normally distributed?							
36.0	36.2	34.8	36.0	34.6	38.4	35.4	36.8
34.7	33.4	37.4	38.2	31.5	37.7	36.9	34.0
34.4	35.7	37.9	39.3	34.0	36.9	35.1	37.0
33.2	36.1	35.2	35.6	33.0	36.8	33.5	35.0
35.1	35.2	34.4	36.7	36.0	36.0	35.7	35.7
38.3	33.6	39.8	37.0	37.2	34.8	35.7	38.9
37.2 39.3							


Heights of 2-year old Males (in inches)

(c) At the right, we have a normal density curve drawn over the histogram.

How does the area of the rectangle corresponding to a height between 34.5 and 35.5 inches relate to the area under the curve between these two heights

Histogram of Height, with Normal Curve

HEIGHT (IN INCHES)

Area under a Normal Curve

Suppose that a random variable X is normally distributed with mean μ and standard deviation σ .

The area under the normal curve for any interval of values of the random variable X represents either

- **the proportion** of the population **with the characteristic described** by the interval of values or
- **the probability** that a randomly selected individual from the population **will have the characteristic** described by the interval of values.

Example:

The weights of giraffes are approximately normally distributed with mean $\mu = 2200$ pounds and standard deviation $\sigma = 200$ pounds.

- (a) Draw a normal curve with the parameters labeled.
- (b) Shade the area under the normal curve to the left of x = 2100 pounds.

(c) Suppose that the area under the normal curve to the left of x = 2100 pounds is 0.3085. Provide two interpretations of this result.